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ABSTRACT

Due to technology advances, reconstructing three-dimensional
representations of physical environments inreal time using
cheap and non-professional cameras and PCs becomes pos-
sible. These advances will make 3-D tele-immersive envi-
ronments available for everyone in the near future. However,
the amount of data captured by a Tele-Immersion (TI) system
can be very large. Compression is needed to ensure real-time
transmission of the data. Due to this real-time requirement,
compressing TI data can be a challenging task and no current
techniques can effectively address this issue. In this paper, we
propose a skeleton-based compression. The main idea of this
approach is to take advantage of prior knowledge of objects,
e.g., human figures, in the physical environments and to repre-
sent their motions using just a few parameters. The proposed
compression method provides tunable and high compression
ratios (from 50:1 to 5000:1) with reasonable reconstruction
quality. Moreover, the proposed method can estimate motions
from the noisy data captured by our TI system in real time.

1. INTRODUCTION

Three-dimensional Tele-Immersion (TI) systems aim to pro-
vide a rich communication medium that captures 3-D data
from physically separated environments and projects the cap-
tured data into a shared virtual space inreal time [1, 2]. Due
to recent technology advances, a 3-D TI system can be con-
structed cheaply using off-the-shelf products. Figure 1 shows
a 360-degree full-body reconstruction from our TI system.

One of the major bottlenecks of the current 3-D TI sys-
tems is the difficulty of transmitting the huge amount of data
in real time. For example, our system, which generates640×
480 pixel depth and color maps from 10 camera clusters in
a rate of 15 frames per second (fps), requires a 220 MB/s
bandwidth. When two TI systems communicate, the required
bandwidth becomes 440 MB/s to guarantee real-time interac-
tion. Several methods [3, 4] have been proposed to address
this problem using image and video compression techniques,
but the data volume remains to be prohibitively large. Cur-
rently, our system, using the compression method proposed
by Yang et al. [4], can only reach 4∼5 fps when connected
with a single remote TI.

TI data . Our TI data is composed of a stream of points
as shown in Figure 1. These points are captured from our
TI system with 10 calibrated camera clusters. Each camera
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Fig. 1. Point data captured from our TI system with 10 calibrated
camera clusters. All clusters are registered to a global coordinate
system. The full 3-D reconstruction is simply a union of the individ-
ual reconstructions without any post processing, e.g., hole filling or
noisy point removal, due to the real-time constraint.

cluster has three b/w and one color cameras and generates
both depth and color maps. Points generated by the clusters
are registered to a global coordinate system. Because of the
nature of the stereo reconstruction, our data can be very noisy.

Challenges of compressing TI data. Methods have been
proposed to compress static or dynamic point data [5, 6, 7,
8, 9, 10]. However, there are several issues that have not yet
been addressed in the literature, thus making our compression
problem more challenging. The main challenges include:

1. real-time constraint,
2. very little time for data accumulation, and
3. multiple or no data correspondences.

The real-time constraint forbids us to directly use most
of the existing compression methods for point data, e.g., the
methods [5, 6] designed for off-line compression (which usu-
ally takes tens of seconds to several minutes to compress a
few thousands of points, and our system creates about 7∼9
thousand points in each frame). The real-time constraint also
requires us to accumulate only very little data, i.e., the cap-
tured data should be transmitted as soon as they become avail-
able. However, data accumulation is usually necessary for the
methods that exploit temporal coherence [7, 8, 9, 10].

Finding correspondences between two consecutive point
data is another challenging problem. In many existing motion
compression methods [11, 12, 13], the correspondence infor-
mation is given. This is not the case in our TI data. To make
the problem even more difficult, a point in a point set may
correspond to zero or multiple points in the next point set.
A point may not have any correspondence because the point
may become occluded in the next frame so that no cameras
can see it, and, similarly, a point can correspond to multiple
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Fig. 2. Skeleton-based compression of the point dataQ, whereP is our model, andT is the motion parameter (e.g., the skeleton configura-
tion) that transformsP to Q. The prediction residualsR is the difference betweenT (P ) andQ.

points because the point is in the visible regions of multiple
cameras and is reconstructed multiple times.

Our approach. This paper aims to address the challenges
mentioned above in TI data compression. We use a model
based approach. The main idea of this work is to take advan-
tage of prior knowledge of objects, e.g. human figures, in the
TI environments and to represent their motions using just a
few parameters, e.g., joint positions and angles.

More specifically, our proposed method compresses points
that represent human motion using motion estimation. There-
fore, instead of transmitting the point clouds, we can simply
transmit the motion parameters. This approach is based on
the assumption that most points will move under rigid-body
transform along with the skeleton.

In reality, point movements may deviate from this assump-
tion, such as muscle movements and hair or cloth deforma-
tions. Our experimental results also show that when these
“secondary” motions are discarded, the entire human move-
ment becomes very unnatural. The same issue has also been
observed by others, e.g., Arikan [8], in compression motion
capture data. Therefore, we further compress the deviations
from the rigid movements. As we will see later (in Section 4),
the deviations (we call prediction residuals) in most casesare
small. An overview of this skeleton-based approach is shown
in Figure 2.

Main contribution . As far as we know, we proposed
the first skeleton-based compression method for TI data. Our
compressor provides (tunable) high compression ratios (from
50:1 to 5000:1) with reasonable reconstruction quality. The
“peak signal-to-noise ratio” of the proposed compression method
is between 28 dB and 30.8 dB. Most importantly, our method
can estimate motions from the data captured by our TI system
in real time (10+ fps).

2. RELATED WORK

TI data compression. Only a few methods have been pro-

posed to compress TI data. Kum et al. [3] proposed an algo-
rithm to compress TI data in real time. Their method aimed
to provide scalability to camera size, network bandwidth, and
rendering power. Their method has 5:1 compression ratio.
Recently, Yang et al. [4] proposed a real-time compression
method to compress depth and color maps using lossless and
lossy compression, respectively. Their method has 15:1 com-
pression ratio. Unfortunately, the volume produced by these
real-time compression methods is still too large to be trans-
mitted in real time.

Motion estimation. Extensive work has been done to
track human motion in images (see surveys [14, 15]). In this
paper, we focus on motion estimation from 3-D points.

A popular method called “Iterative Closest Points” (ICP)
[16, 17] has shown to be an efficient method for estimating
rigid-body motion [18] in real time. For two given point
setsP andQ, ICP first computes corresponding pairs{(pi ∈
P, qi ∈ Q)}. Using these corresponding pairs, ICP computes
a rigid-body transformT such that the “matching error” de-
fined in Eq. 1 betweemP andQ is minimized.

error = argmin
T

∑

i

|(T (pi), qi)|
2 . (1)

The main step for minimize the matching error (see details in
[16]) is to compute the cross-covariance matrixΣPQ of the
corresponding pairs{pi, qi},

ΣPQ =
1

n

n
∑

i=1

[(pi − µp)(qi − µq)
t] , (2)

whereµp andµq are the centers of{pi} and{qi}, resp., andn
is the size of{pi, qi}. As outlined in Algorithm 2.1, ICP iter-
ates these steps until the error is small enough. An important
property of ICP is that the error always decreases monotoni-
cally to a local minimum when Euclidean distance is used for
finding corresponding points.



Algorithm 2.1: ICP(P,Q, τ )

repeat
{

find corresponding points{(pi ∈ P, qi ∈ Q)}
computeerror andT in Eq. 1
P = T (P )

until error < τ

ICP has also been applied to estimate motions of articu-
lated objects, e.g., hand [19], head [20], upper [21] and full
bodies [22]. In these methods, ICP is applied to minimize
the distance between each body part and the point cloudQ,
i.e., error(P,Q) =

∑

l error(Pl, Q), wherePl represents
the points of the body partl. However, this approach lacks a
global mechanism to oversee the overall fitting quality. For
example, it is common that two body parts can overlap and a
large portion ofQ is not ‘covered’ byP . Therefore, consid-
ering the global structure as a whole is needed. To the best
of our knowledge, joint constraint [21, 22] is the only global
measure studied.

3. MOTION ESTIMATION

We extend ICP to estimate motion of dynamic point data in
real time. Our approach uses an initialization (may not be real
time) to generate a skeleton of the subject from the first point
cloud and then a real-time tracking method will fit the skele-
ton to the point clouds captured from the rest of the move-
ments. Several methods, e.g., [23], exist and can provide us
an initial skeleton to start the process. In this paper, we will
focus on the motion tracking aspect.

3.1. Model and Segmentation

Our method uses the segmentation of the initial frame to es-
timate the motion. This intuition behind this is the advantage
of that theappearances of the initial frame and the remain-
ing frames are usually similar. From now on, we denote the
point set in the first frame asP . We compute a segmentation
of P using a given skeletonS. A skeletonS is organized as
a tree structure, which has a root link,lroot, representing the
torso of the body. Each link has the shape of a cylinder. An
example of a skeleton is shown in Figure 4. After segmen-
tation, each point ofP is associated with a link. We denote
the points associated with a linkl and a skeletonS asPl and
PS , respectively. The associated points will move rigidly with
the link as we estimate the motion. Note thatPl ⊂ PS and,
initially, PS = P .

3.2. ICP of Articulated Body

Now, we can start to fit the skeletonS (and its associated
pointsPS) to the next point cloudQ. Our goal here is to find
a rigid-body transform for each link so the (global) distance
betweenPS andQ is minimized. ARTICP is outlined in Al-
gorithm 3.1.

Algorithm 3.1: ARTICP(S,Q, τ )

clusterQ
q.push(lroot)
while q 6= ∅

do



















l← q.pop()
T ←ICP(Pl, Q)
for each childc of l

do
{

applyT to c
q.push(c)

global fitting

Clustering. ARTICP first clusters the current point cloud
Q. Each cluster has a set of points with similaroutward nor-
mals andcolors. These clusters will be used in ICP for find-
ing better correspondences more efficiently. (See details in
Section 3.3.)

Hierarchical ICP. Next, we evoke ICP to compute a rigid-
body transform for each link. Note that we do this in a fashion
that the torso (root) of the skeleton is fitted first and limbs are
fitted last. By considering links in this order, ARTICP can
increase the convergence rate by applying the transform not
only to the link under consideration but also applies the trans-
form to the children of the link. The rationale behind this is
that a child link, e.g., limbs, generally moves with its parent,
e.g., torso. If the child link does not follow the parent’s move-
ment, the movement of the child link is generally constrained
and is easy to track.

Articulation constraint . We consider the articulation con-
straint, i.e., the transformed links should remain jointed. This
is simply done by replacing both of the centersµp andµq in
Eq. 2 by the joint position.

Global fitting . Now, after we apply ICP to the individual
links, the skeletonS is roughly aligned with the current point
cloudQ but may still be fitted incorrectly without considering
the entire skeleton as a whole. We propose to estimate the
global fitting error as:

global error(P,Q) = |Fe(P )− Fe(Q)|, (3)

where the functionFe transforms a point set to a space where
the difference is easier to compute. A more detailed discus-
sion onFe can be found in Section 3.4. Note that Eq. 3 also
computes the prediction residuals.

Features. Before discussing any details, we summarize
the main features of our ARTICP below.

• Hierarchical fitting for faster convergence,
• articulation constraint,
• monotonic convergence to local minimum guaranteed,
• global error minimization.

3.3. Robustness, Efficiency and Convergence

Real time is one of the most important requirements of our
system. Computing correspondences is the major bottleneck
of ICP. Preprocessing the points using some spatial partition-
ing data structures, e.g, k-d tree [24], can alleviate this prob-
lem. Considering additional point attributes, e.g., colorand
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Fig. 3. A (n, c)-clustered k-d tree. Pointsn andm only look for
their corresponding points in the gray regions aroundn andm.

normal information, can also increase both ICP’s efficiency
and robustness. Therefore ideally we would like to use all
these tools to help us achieve the real-time requirement.

However, combining normals and colors with k-d tree is
not trivial. For instance, the performance of k-d tree degrades
quickly (in fact, exponentially) when the dimensionality of
the space becomes high. Moreover, considering additional
attributes usually does not guarantee monotonically conver-
gence, which is an important properly provided by ICP.

To gain efficiency, robustness, and convergence using point
colors and normals and k-d tree, we construct a data structure
called(n, c)-clustered k-d tree (shown in Figure 3), wheren
andc indicate normal directions and color, respectively, asso-
ciated with the points. In this data structure, we cluster nor-
mals by converting them into a geographic coordinate system
and cluster colors using hues and saturations. Then, we con-
struct a k-d tree from the 3-D point positions in each cluster.

When a pointm looks for its corresponding point, ICP
first finds which clusterm falls in and then examines the
points inm’s neighboring clusters using their k-d trees. By
doing so we can find better correspondences efficiently guar-
anteeing that ICP can always converge to a local minimum.
Theorem 3.1 proves this property.

Theorem 3.1. Using a (n, c)-clustered k-d tree, ICP can al-
ways converge monotonically to a local minimum.

Proof. Besl and Mckay [16] have shown that ICP can always
converge monotonically. An important fact that makes this
true is that the corresponding points of a pointp are always
extracted from the same point setQ. The reason why con-
sidering point normals may not have monotone convergence
is that in each iterationp’s corresponding point can be ex-
tracted from a different subset ofQ. On the contrary, ICP
uses a(n, c)-clustered k-d tree will always search forp’s cor-
responding point from the same set of clusters and therefore
is guaranteed to converge monotonically.

3.4. Global Fitting

So far, we only consider fitting each link to the point cloud in-
dependently. However, as we mentioned earlier, considering
links independently sometimes produces incorrect estimation
even when the fitting error (Eq. 1) is small. Therefore, we
realize that, in order to get more robust results, it is necessary
to consider the entire skeleton as a whole.

Global error . Global fitting error (Eq. 3) is measured as
the difference between the skeleton associated point setPS

and the current point setQ. Due to the size difference and
ambiguous correspondences ofPS andQ, it is not trivial to
compute the difference directly. We need a functionFe to
transformPS andQ so that the difference is easier to esti-
mate. In fact, our selection ofFe has been mentioned before
(in Section 3.1): Segmentation. It is important to note thatthe
segmentation process is a global method, i.e., each link com-
petes with other links to be associated with a point. Because
Fe(PS) is already known at the beginning, we only need to
computeFe(Q) at each time step. After segmentingQ, each
link l will have two associated point sets,Pl andQl. To mea-
sure the difference ofPl and Ql, we use a compact shape
descriptor: the second moment,µ, of Pl andQl and compute
the difference ofPl andQl as

|µ(Pl)− µ(Ql)| . (4)

The idea behind this equation is that the second moment pro-
vides an idea of how points distribute around the center of the
link. Therefore, an incorrect estimation will produce a large
error.

When the error of any link is above a user-defined thresh-
old, we start to minimize the global error. To minimize the
global error, we separate the skeletonS and the current point
set Q into groups: S+, S−, Q+ and Q−. A link of S is
in S+ if its global error islower than the threshold, other-
wise the link is inS−. A point of Q is in Q+ if the point is
a link in S+, otherwise the link is inQ−. By separating the
links and points into subgroups, we can ignore the groups that
are considered as correctly estimated and repeat ICP (Algo-
rithm 3.1) using only links inS− and the point setQ−, i.e,
we call ARTICP(S−, Q−, τ). This process is iterated until
all links have low global errors or until no improvement can
be obtained.

4. PREDICTION RESIDUALS

Motion estimation brings the skeletonS (and its associated
point setPS) close to the current point cloudQ. However,
due to several reasons, e.g., non-rigid movements and estima-
tion errors, our modelPS may not matchQ exactly. We call
the difference betweenPS andQ “prediction residuals” (or
simply residuals). Because after motion estimationPS andQ
are aligned to each other, we expect the residuals to be small.
In this section, we present a method to compute the prediction
residuals.

Similar to Eq. 4 for estimating global errors, we compute
the prediction residuals for each link by measuring the differ-
ence betweenPl andQl. However, this time the difference is
measured by regularly re-sampling the points on a grid. More
precisely, we project bothPl andQl to a regular 2-D grid em-
bedded in a cylindrical coordinate system defined by the link
l. BecausePl andQl are now encoded in regular grids, we
can easily compute the difference, which can be compressed
using image compression techniques. Figures 4(a)∼(c) illus-
trate the prediction residual computed from the torso link.
Note that because this projection is invariant from a rigid-
body transform, we only need to re-sampleQl at each time
step.



(A torso link) (a) (b) (c)

Fig. 4. A skeleton and the torso link shown as a cylinder. (a) Color and depth mapsat timet − 1 of the torso link. The Y-axis of the maps is
parallel to the link. (b) Color and depth maps at timet of the torso link. (c) The differences between the maps at timest − 1 andt.

We determine the size of a 2-D grid from the shape of a
link l and the size ofl’s associated points|Pl|. We make sure
that our grid size is at least2|Pl| using the following formu-
lation, i.e., the width and the height of the grid are2πRlS
andLlS, resp., whereRl andLl are the radius and the length

of the link l andS =
√

|Pl|
πRlLl

. We call that a grid encodes

x% prediction residuals if the grid has size2|Pl| ·
x

100
. As

we will see later, we can tune the grid size to produce various
compression ratios and qualities.

5. EXPERIMENTAL RESULTS

We use both synthetic and TI data to evaluate our method.
Synthetic data is generated by sampling points from a polyg-
onal mesh animated using the mocap data from Carnegie Mel-
lon University. Next, we study synthetic data because it pro-
vides a ‘ground truth’ for us to evaluate our method. We study
the quality of our skeleton-based compression on the TI data
with various levels of prediction residuals considered. We
also compare our skeleton-based compression to H.264 video
compression [25] and Yang et al.’s method [4]. All the exper-
imental results in this section are obtained using a Pentium4
3.2 GHz CPU with 512 MB of RAM. The best way to visual-
ize our results is via the videos which can be found from our
project page at:http://www.cs.gmu.edu/∼jmlien/research/TI/

5.1. Motion estimation of synthetic data

We study the robustness of our motion estimation using three
synthetic data sets: dance, crouch&flip, turn and tai chi. Each
frame in the synthetic data contains about 10,000 points, and
75% of the points are removed randomly to eliminate easy
correspondences. The table below shows a summary of the
averaged motion estimation frame rate. All motions can be
estimated in real time by our method.

motion dance crouch&flip turn tai-chi
estimated (Fig. 5) (Fig. 6) (Fig. 7) (in video)
avg. fps 39.1 fps 29.6 fps 48.4 fps 61.3 fps

The motion capture data from Carnegie Melllon Univer-
sity is composed of a skeleton and a sequence of joint angles
for each joint. In order to measure the quality of the estimated
motion, we convert the joint angles to joint positions. Then,
we measure the quality as the normalized distance offsetet

between joints, i.e.,

et =
1

n ·R

n
∑

i=1

|jest
i − j

mocap
i |,

wheren is the number of joints,jest
i and j

mocap
i are thei-

th estimated and mocap joint positions, resp., andR is the
radius of the minimum bounding ball of the point cloud, i.e.,
we scale the skeleton so that the entire skeleton is inside a
unit sphere. In the following paragraphs, we will compare the
qualities of our method in several scenarios.

With and without global constraints. We compare the
difference between the tracking algorithm with and without
articulation and global fitting constraints. Figure 5 showsthat
global constraintsdo have a significant influence on motion
estimation quality.

Downsampling factor. In this experiment, we study how
point size (% of downsampling) affects the motion estimation
quality. That is 10% downsampling means that only 1000
points from a point set with 10,000 points are used for esti-
mating motion. Figure 6 shows our experimental results. As
we can see from the result, the downsampling rate does not
have a significant influence on the quality (at least down to
1% for this crouch & flip motion).

Noise level. In this experiment, we study how noise af-
fects the quality. From Figure 7, it is clear that as we increase
the noisiness of the points, the difference between the esti-
mated motion and the “ground truth” increases. However, the
overall difference remains small even for very noisy data.

5.2. Compressing TI data

We evaluate the results of our compression method using four
motion sequences captured by our TI system. These motions
are performed by two professional dancers, one student and
one tai-chi master. The data captured by our TI system have
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Fig. 5. Top: The postures from (a) motion capture, and (b) es-
timation with global constraints and (c) without global constraints.
Bottom: Tracking errors with and without global constraints.
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Fig. 6. Tracking errors with different downsampling factors.

about 7 to 9 thousand points in each frame. Because the TI
data is much noisier than the synthetic data and can have sig-
nificant missing or overlapping data, estimating motion from
the TI data is more difficult, thus we use 50% of the initial
point set as our model. The table below shows that we can still
maintain at least 10 fps interactive rate in all studied cases.

motion dancer 1 dancer 2 student tai-chi master
estimated (Fig 2) (Fig 4) (in video) (Fig 9)
avg. fps 11.9 fps 11.5 fps 12.5 fps 12.6 fps

Quality . Unlike synthetic data, we do not have a ground
truth to directly evaluate the quality of our method using TI
data. Our approach is to compute the differences between
the point data without compression (calledinput data) and
the datacompressed and decompressed using the proposed
method (calledcompressed data). In order to measure the
difference between these two point sets, we render images of
each point set from six (60 degree separated) camera views in
each time frame. Then, we compute the “peak signal-to-noise
ratio” (PSNR) for each pair of images(I, J) rendered from
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Fig. 7. Tracking errors with different noise intensities.

the input data and compressed data by the same camera in
the same frame. PSNR is defined as:20 log10 ( 255

rmse
), where

rmse =
√

∑

i |Ii − Ji|2 is the root mean squared error of
imagesI andJ . A larger PSNR indicates a better quality.
Typical PSNR values in image compression are between 20
and 40 dB. The results of our study are summarized in Ta-
ble 1.

In Table 1, We also measure the qualify by varying the
levels of residual considered. We considered three compres-
sion levels, i.e., compression without residuals and with 50%
and 100% residuals. A compression withx% residuals means
its residual maps arex% smaller than the full residual maps.
We see that encoding residuals indeed generates better recon-
struction than that without residuals by 4 dB. Figure 8 pro-
vides an even stronger evidence that considering residualsal-
ways produces better reconstructions for all frames. Another
important observation is that the compression quality remains
to be the same (around 30) for the entire motion. Figure 9
shows that the difference is more visible when the prediction
residuals are not considered.

We would like to note that using PSNRs may not fully re-
flect the compression quality. For example, the compressed
data generated using no residuals looks much more robotic
and unnatural than that generated using only 25% residuals.
This difference can be easily observed from the rendered ani-
mation but not in Table 1.

Compression Ratio. One of the motivations of this work
is that no existing TI compression methods can provide high
compression ratios. In this experiment, we show that our
skeleton-based compression method can achieve 50:1 (with
100% residuals) to 5000:1 (without desiduals) compression
ratios. As we have shown earlier, our compression method
can provide different compression ratio by varying the level of
residuals considered during encoding. To increase our com-
pression furthermore, we use jpeg and png libraries to com-
press color and depth residuals, respectively. In addition, we



Table 1. Compression quality. The “peak signal-to-noise ratio” (PSNR) is computed between rendered images of the input and
compressed point data. PSNR is defined as:20 log10 ( 255

rmse
), wherermse =

√
∑

i |Ii − Ji|2 is the root mean squared error of
imagesI andJ . We also measure the quality by varying the levels of residual considered. A compression withx% residuals
means its residual maps arex% smaller than the full residual maps.

motion dancer 1 dancer 2 student tai-chi master
no residuals 23.87 dB 24.10 dB 25.82 dB 26.27 dB

avg. PSNR 25% residuals 25.77 dB 26.18 dB 27.96 dB 28.75 dB
100% residuals 27.95 dB 28.27 dB 29.91 dB 30.83 dB

(a) (b) (c) (d) (e)

Fig. 9. Reconstructions from the compressed data and their differences with theuncompressed data. (a) Uncompressed data. (b) Compressed
without residuals. (c) Difference between (a) and (b). (d) Compressed with residuals. (e) Difference between (a) and (d).
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Fig. 8. PSNR values from the tai-chi motion. Each point in the
plot indicates a PSNR value from a rendered image. For each time
step, there are 12 points, which indicate 12 images rendered from
two points with 100% and 0% residuals.

compare our compression method to other compression meth-
ods including the method proposed by Yang et al.’s [4] and
H.264 (we use an implementation from [25]). We summarize
our experimental results in Table 2.

We would like to note that because our method is funda-
mentally different from the other two methods, we can achieve
very high compression ratio while maintaining reasonable re-
construction quality (as shown earlier). Both Yang et al.’sand
H.264 are image (or video) based compressions, which take
color and depth images as their input and output. On the con-
trary, our skeleton-based compression converts the color and
depth images to motion parameters and prediction residuals.
Moreover, even though H.264 provides high quality and high
ratio compression, H.264 is not a real-time compression for
the amount of data that we considered in this work.

6. DISCUSSION AND FUTURE WORK

We proposed a skeleton-based compression method to con-
vert point set data to a few motion parameters and a set of
residual maps, whose size can be tuned adaptively according
to available space and time. Our motion estimation method,
ARTICP, can efficiently estimate the motions from synthetic
and TI data at interactive rates (10∼60 frames per second).

Despite our promising results, our method has limitations.
First, we observed that our motion estimation fails when many
occlusions occurred. This problem becomes more serious
when multiple subjects appear in the scene. Second, we as-
sume that points move under rigid-body transform and non-
rigid motions are usually comparatively small. However, this
assumption becomes invalid when the subjects wear skirts or
long hairs. Third, although the quality of our compression
method is reasonable, its PSNR values are still low compared
to the current video compression standards. It is not clear at
this point how our method can be improved to produce higher
quality results.

Currently, we are exploring the possibility of estimating
motions from multiple targets. Our compression method can
also be extended in several ways. For example, we would like
to investigate efficient ways to detect temporal coherence in
our residual maps. One possible approach is to accumulate
residuals from a few frames and compress them using video
compression techniques.

Note that even though we focus only on the application
in data compression in this paper, the result of this work can
also be used broadly in applications including human activity
recognition and analysis [26, 27], marker-less motion capture,
and Ergonomics.



Table 2. Compression ratio. Both Yang et al.’s [4] and H.264 (we use an implementation from [25]) compression methods took
the color and depths images as their input and output. The compression ratio of H.264 reported in this table is obtained using
75% of its best quality. We use jpeg and png libraries to compress color and depth residuals, respectively.

motion dancer 1 dancer 2 student tai-chi master
size before compression 142.82 MB 476.07 MB 1.14 GB 988.77 MB

Yang et al. [4] 11.36 11.73 10.23 14.41
compression H.264 [25] 64.04 53.78 32.04 49.58

ratio no residuals 1490.31 3581.52 5839.59 5664.55
25% residuals 195.62 173.52 183.80 183.82

100% residuals 66.54 55.33 60.29 61.43
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