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ABSTRACT 10 camera views ~ = full body reconstruction

Due to technology advances, reconstructing three-diroaaki '
representations of physical environmentgeéal time using
cheap and non-professional cameras and PCs becomes pc ‘
sible. These advances will make 3-D tele-immersive envi- | "3 T
ronments available for everyone in the near future. However

the amount of data captured by a Tele-Immersion (TI) systen |+~ b
can be very large. Compression is needed to ensure real-time
transmission of the data. Due to this real-time requirement
compressing Tl data can be a challenging task and no currehtd- 1. Point data captured from our Tl system with 10 calibrated
techniques can effectively address this issue. In thispage Ccamera clusters. All clusters are registered to a global coordinate
propose a skeleton-based compression. The main idea of trﬁélsggbnqufufcut:Ioi_stCﬁﬁgnglrjlc?gsltspig?:ggs?ngnIgg thtgl‘z 'Hﬁi'r‘]’éd;)r
approach is to take gdvantage_of prior knowledge of ObJeCtér]1oisy point removal, due to theyreal-time constraint.

e.g., human figures, in the physical environments and t@repr

sent their motions using just a few parameters. The proposed

compression method provides tunable and high compressi%ster has three b/w and one color cameras and generates

ratios (from 50:1 to 5000:1) with reasonable reconstrlmct'io both depth and color maps. Points generated by the clusters

"hre registered to a global coordinate system. Because of the
nature of the stereo reconstruction, our data can be vesy.noi
Challenges of compressing Tl dataMethods have been
1. INTRODUCTION proposed to compress static or dynamic point data [5, 6, 7,

8, 9, 10]. However, there are several issues that have not yet

Three-dimensional Tele-Immersion (TI) systems aim to probeen addressed in the literature, thus making our compressi

vide a rich communication medium that captures 3-D datgroblem more challenging. The main challenges include:

from physically separated environments and projects the ca

i,
g

-

sty

from the noisy data captured by our Tl system in real time.

tured data into a shared virtual spaceeéal time [1, 2]. Due 1. real-time constraint, .
to recent technology advances, a 3-D Tl system can be con- 2. Very little time for data accumulation, and
structed cheaply using off-the-shelf products. Figuredsh 3. multiple or no data correspondences.

a 360-degree full-body reconstruction from our Tl system.
One of the major bottlenecks of the current 3-D Tl sys-
tems is the difficulty of transmitting the huge amount of dat
in real time. For example, our system, which generét@sx<
480 pixel depth and color maps from 10 camera clusters i
a rate of 15 frames per second (fps), requires a 220 MB/ S . .
bandwidth. When two Tl systems communicate, the require ousand potlnts In eaclh Iramei). The lr.(tat?l't('jmf cpnstrtamt al
bandwidth becomes 440 MB/s to guarantee real-time intera equires us to accumulate only very Tittie dala, 1.€., he-ca .
ed data should be transmitted as soon as they become avail

X r
tion. Several methods [3, 4] have been proposed to addre % P

. o ’ . : . le. However, data accumulation is usually necessaréor t
this problem using image and video compression technique ethods that exploit temporal coherence [%/ 8 9 10]_‘"

but the data volume remains to be prohibitively large. Cur- Finding correspondences between two consecutive point
tr)enggnougtsglsta? ' Cuasrl]ngn:her ecscme? Séoxhrgﬁtgggnzgggsecgata is another challenging problem. In many existing nmotio
y Y L y P compression methods [11, 12, 13], the correspondence infor

with a single remote TI. =S S .
Tl data. Our Tl data is composed of a stream of pointsmat|on is given. This is not the case in our Tl data. To make

as shown in Figure 1. These points are captured from oJPe problem even more difficult, a point in a point set may

Tl system with 10 calibrated camera clusters. Each Came%}orre_spond to zero or multiple points in the next point set.
' point may not have any correspondence because the point

*imlien@gmu.edu may become occluded in the next frame so that no cameras
thajcsy@eecs.berkeley.edu can see it, and, similarly, a point can correspond to meitipl

The real-time constraint forbids us to directly use most
of the existing compression methods for point data, e.@., th
qnethods [5, 6] designed for off-line compression (which-usu
lly takes tens of seconds to several minutes to compress a
ew thousands of points, and our system creates abe@t 7
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Step 1: Motion Estimation

| |
point cloud @ ~model P

Step2: Prediction Residuals

Fig. 2. Skeleton-based compression of the point datavhereP is our model, and” is the motion parameter (e.g., the skeleton configura-
tion) that transformg® to Q. The prediction residual® is the difference betwe€efi( P) andQ.

points because the point is in the visible regions of mudtipl posed to compress Tl data. Kum et al. [3] proposed an algo-
cameras and is reconstructed multiple times. rithm to compress Tl data in real time. Their method aimed

Our approach. This paper aims to address the challengeso provide scalability to camera size, network bandwidtid a
mentioned above in Tl data compression. We use a mode¢ndering power. Their method has 5:1 compression ratio.
based approach. The main idea of this work is to take advarRecently, Yang et al. [4] proposed a real-time compression
tage of prior knowledge of objects, e.g. human figures, in thenethod to compress depth and color maps using lossless and
TI environments and to represent their motions using just &ébssy compression, respectively. Their method has 15:% com
few parameters, e.g., joint positions and angles. pression ratio. Unfortunately, the volume produced byehes

More specifically, our proposed method compresses pointsal-time compression methods is still too large to be trans
that represent human motion using motion estimation. Fherenitted in real time.
fore, instead of transmitting the point clouds, we can simpl ~ Motion estimation. Extensive work has been done to
transmit the motion parameters. This approach is based drack human motion in images (see surveys [14, 15]). In this
the assumption that most points will move under rigid-bodypaper, we focus on motion estimation from 3-D points.
transform along with the skeleton. A popular method called “lterative Closest Points” (ICP)

In reality, point movements may deviate from this assump[16, 17] has shown to be an efficient method for estimating
tion, such as muscle movements and hair or cloth deformaigid-body motion [18] in real time. For two given point
tions. Our experimental results also show that when thesgetsP and@, ICP first computes corresponding paj(g; €
“secondary” motions are discarded, the entire human moveP, ¢; € Q)}. Using these corresponding pairs, ICP computes
ment becomes very unnatural. The same issue has also beengid-body transforn¥” such that the “matching error” de-
observed by others, e.g., Arikan [8], in compression motiorfined in Eq. 1 between® and( is minimized.
capture data. Therefore, we further compress the devgtion
from the rigid movements. As we will see later (in Section 4), error = argmin Z (T (ps), qi)P . (1)
the deviations (we call prediction residuals) in most cases T ;
small. An overview of this skeleton-based approach is shown
in Figure 2. The main step for minimize the matching error (see details in

Main contribution . As far as we know, we proposed [16]) is to compute the cross-covariance matrxg of the
the first skeleton-based compression method for Tl data. Oworresponding pairép;, ¢; }.
compressor provides (tunable) high compression ratiosn(fr

7

50:1 to 5000:1) with reasonable reconstruction qualitye Th 1 < .
“peak signal-to-noise ratio” of the proposed compressiethuod XpQ = > i — o) (@i — 1g)'] (2
is between 28 dB and 30.8 dB. Most importantly, our method i=1

can estimate motions from the data captured by our T| system
in real time 0+ fps) P Y y wherey,, andy,, are the centers dfp; } and{¢; }, resp., anc
' is the size of(p;, ¢; }. As outlined in Algorithm 2.1, ICP iter-

ates these steps until the error is small enough. An impbrtan
2. RELATED WORK property of ICP is that the error always decreases monotoni-
cally to a local minimum when Euclidean distance is used for
Tl data compression Only a few methods have been pro- finding corresponding points.



Algorithm 2.1: ICP(P,Q, 1) Algorithm 3.1: ARTICP(S, @, 1)
repeat cluster@
find corresponding point§(p; € P,q; € Q)} q-pust{lo0t)
{computeerror and7 in Eq. 1 while ¢ #
P=1T(P) [« g.pop)
until error < 7 T —ICP(P, Q)
do ¢ for each childc of [
applyT'toc
90 4 ¢.pustc)
ICP has also been applied to estimate motions of articu- - '
global fitting

lated objects, e.g., hand [19], head [20], upper [21] and ful
bodies [22]. In these methods, ICP is applied to minimize
the distance between each body part and the point digud
i.e., error(P,Q) = >, error(F;,Q), where P, represents
the points of the body patt However, this approach lacks a
global mechanism to oversee the overall fitting quality. Fo
example, it is common that two body parts can overlap and
large portion ofQ is not ‘covered’ byP. Therefore, consid-
ering the global structure as a whole is needed. To the be
of our knowledge, joint constraint [21, 22] is the only glbba
measure studied.

Clustering. ARTICP first clusters the current point cloud
(- Each cluster has a set of points with simitetward nor-

sandcolors. These clusters will be used in ICP for find-
Ing better correspondences more efficiently. (See details i
§ection 3.3)

Hierarchical ICP. Next, we evoke ICP to compute arigid-
body transform for each link. Note that we do this in a fashion
that the torso (root) of the skeleton is fitted first and limies a
fitted last. By considering links in this order,R&XICP can
increase the convergence rate by applying the transform not
only to the link under consideration but also applies thegra

. . . . . form to the children of the link. The rationale behind this is
We extend ICP to estimate motion of dynamic point data it 4 child link, e.g., limbs, generally moves with its pere

real time. Our approach uses an initialization (may not bé re e.g., torso. If the child link does not follow the parent'svae

time) to generate a skeleton of the subject from the firsttpoinmenL the movement of the child link is generally constrdine

cloud and then a real-time tracking method will fit the skele-5,4 is easy to track.

ton to the point clouds captured from the rest of the move-  aicylation constraint . We consider the articulation con-
ments. Several methods, e.g., [23], exist and can provide Wgraing, j.e., the transformed links should remain jointehis
an initial skeleton to start.the process. In this paper, we wi ;g simply done by replacing both of the centgrsandys, in
focus on the motion tracking aspect. Eq. 2 by the joint position. K
Global fitting . Now, after we apply ICP to the individual

. links, the skeletor$ is roughly aligned with the current point
3.1. Model and Segmentation cloud@ but may still be fitted incorrectly without considering
é_he entire skeleton as a whole. We propose to estimate the
global fitting error as:

3. MOTION ESTIMATION

Our method uses the segmentation of the initial frame to e
timate the motion. This intuition behind this is the advaeta
of that theappearances of the initial frame and the remain- lobal PO)=|F.(P)—F 3

ing frames are usually similar. From now on, we denote the global.error(P, Q) = |Fe(P) (@), )
point set in the first frame aB. We compute a segmentation where the functior, transforms a point set to a space where
of P using a given skeletofi. A skeletonsS is organized as the difference is easier to compute. A more detailed discus-
a tree structure, which has a root lirik,, representing the sion on#, can be found in Section 3.4. Note that Eq. 3 also
torso of the bOdy Each link has the Shape of a Cyllnder. Artomputes the prediction residuals.

example of a skeleton is shown in Figure 4. After segmen- Features Before discussing any details, we summarize
tation, each point of? is associated with a link. We denote the main features of our &rICP below.

the points associated with a lirlkand a skeletoy as P, and

Pg, respectively. The associated points will move rigidlytwit e Hierarchical fitting for faster convergence,

the link as we estimate the motion. Note ttfatC Ps and, e articulation constraint, o

initially, Pg = P. e monotonic convergence to local minimum guaranteed,
e global error minimization.

3.2. ICP of Articulated Body 3.3. Robustness, Efficiency and Convergence

Now, we can start to fit the skeletof (and its associated Real time is one of the most important requirements of our
points Ps) to the next point cloud). Our goal here is to find system. Computing correspondences is the major bottleneck
a rigid-body transform for each link so the (global) distanc of ICP. Preprocessing the points using some spatial artiti
betweenPs and( is minimized. ARTICP is outlined in Al-  ing data structures, e.g, k-d tree [24], can alleviate thidp
gorithm 3.1. lem. Considering additional point attributes, e.g., caod



COI"% T A L e B T Global error. Global fitting error (Eq. 3) is measured as
LT T T T BT T T T Sy the difference between the skeleton associated poinPset
and the current point s&€). Due to the size difference and
f}% ambiguous correspondencesf and @), it is not trivial to

n
o

compute the difference directly. We need a functignto
transformPs and Q so that the difference is easier to esti-
mate. In fact, our selection df, has been mentioned before
(in Section 3.1): Segmentation. Itis important to note that
segmentation process is a global method, i.e., each link com
. _ petes with other links to be associated with a point. Because
;Igi} g&)rfe S("(v)f])d'ﬁ]'usfirﬁg E(r;‘iht;eer'ap(r)ém;’;ﬁg‘;:’;uorgg’dmk for I, (Pg) is already known at the beginning, we only need to
ponding p grayreg m- computeF, (Q) at each time step. After segmentiflg each
link [ will have two associated point set, and@;. To mea-

. . . , . sure the difference of, and @;, we use a compact shape
normal information, can also increase both ICP’s efficiency, escriptor: the second momept,of 7, and(Q; and compute
and robustness. Therefore ideally we would like to use all o jitference o, andQ,; as '

these tools to help us achieve the real-time requirement.
However, combining normals and colors with k-d tree is () — p(@u)] - (4)

not trivial. For instance, the performance of k-d tree dégsa 1 jjeq hehind this equation is that the second moment pro-
quickly (in fact, exponentially) when the dimensionality 0 jjes an idea of how points distribute around the centeref th
the space becomes high. Moreover, considering additiongf,, “therefore, an incorrect estimation will produce aar
attributes usually does not guarantee monotonically @enve g,

gence, W.hiCh _is_ an important properly provided by ICP_' . When the error of any link is above a user-defined thresh-
To gain efficiency, robustness, and convergence using POl we start to minimize the global error. To minimize the
colors and normals and k-d tree, we construct a data SteiCtug|oha| error, we separate the skeledand the current point
called(n, ¢)-clustered k-d tree (shown in Figure 3), where setQ into groups: S*, S, QT andQ~. A link of S is
andc indicate normal directions and color, respectively, assoj, g+ if its global error islower than the threshold. other-
ciated with the points. In this data structure, we cluster no yise the link is inS—. A point of Q is in Q™ if the péint is
mals by converting th_em into a geographu; coordinate system jink in S+, otherwise the link is i)~. By separating the
and cluster colors using hues and saturations. Then, we COffaks and points into subgroups, we can ignore the grougs tha
struct a k-d tree from the 3-D point positions in eac_h cluster gre considered as correctly estimated and repeat ICP (Algo-
_When a pointm looks for its corresponding point, ICP rithm 3.1) using only links inS— and the point se®~, i.e,
first finds which clustern falls in and then examines the \ye call ARTICP(S—,Q~,7). This process is iterated until
points inm’s neighboring clusters using their k-d trees. By g jinks have low global errors or until no improvement can
doing so we can find better correspondences efficiently guage gptained.
anteeing that ICP can always converge to a local minimum.
Theorem 3.1 proves this property.

latitude .y
°3

kd-tree

[SE]

-7 longitude m

4. PREDICTION RESIDUALS

Theorem 3.1. Using a (n, ¢)-clustered k-d tree, ICP can al-

ways converge monotonically to a local minimum. Motion estimation brings the skeletdh (and its associated

point setPg) close to the current point clou@. However,

due to several reasons, e.g., non-rigid movements andastim
Proof. Besl and Mckay [16] have shown that ICP can alway_s.[ion errors, our modePs mgay not m%th‘Q exactly. We call

converge monotonically. An important fact that makes thispe jifference betwees andQ “prediction residuals” (or
true is that the corresponding points of a pairre always iy o\ residuals). Because after motion estimatiarand(
extracted from the same point sgt The reason why con- are aligned to each other, we expect the residuals to be.small

sidering point normals may not have monotone CoNVergencey g section, we present a method to compute the predictio
is that in each iteratiop’s corresponding point can be ex- .«iqals

tracted from a different subset . On the contrary, ICP Similar to Eq. 4 for estimating global errors, we compute
uses gn, c)-clustered k-d tree will always search 8 Cor- o hrediction residuals for each link by measuring theediff
respondmg point from the same set of clusters and thereforéenCe betweet®, and(),. However, this time the difference is
is guaranteed to converge monotonically. measured by regularly re-sampling the points on a grid. More
precisely, we project both, and@); to a regular 2-D grid em-
3.4. Global Fitting bedded in a cylindrical coordinate system defined by the link
[. BecauseP, and@; are now encoded in regular grids, we
So far, we only consider fitting each link to the point cloud in can easily compute the difference, which can be compressed
dependently. However, as we mentioned earlier, consigerinusing image compression techniques. Figures~<4@)illus-
links independently sometimes produces incorrect estimat trate the prediction residual computed from the torso link.
even when the fitting error (Eqg. 1) is small. Therefore, weNote that because this projection is invariant from a rigid-
realize that, in order to get more robust results, it is neags body transform, we only need to re-samp)e at each time
to consider the entire skeleton as a whole. step.



(A torso link) | (b)

Fig. 4. A skeleton and the torso link shown as a cylinder. (a) Color and depth ataipset — 1 of the torso link. The Y-axis of the maps is
parallel to the link. (b) Color and depth maps at timef the torso link. (c) The differences between the maps at timeg andt.

We determine the size of a 2-D grid from the shape of a The motion capture data from Carnegie Melllon Univer-
link [ and the size of's associated pointd”’|. We make sure sity is composed of a skeleton and a sequence of joint angles
that our grid size is at leag{P,| using the following formu-  for each joint. In order to measure the quality of the estadat
lation, i.e., the width and the height of the grid &eR;S  motion, we convert the joint angles to joint positions. Then
andL,S, resp., wherd?; and L, are the radius and the length we measure the quality as the normalized distance offset

of the link/ and S = JRLL"LZ. We call that a grid encodes between joints, i.e.,

x% prediction residuals if the grid has si2eP}| - 155 As 1 &

we will see later, we can tune the grid size to produce various e@= 3 Jgest = grecar),
compression ratios and qualities. ST i=1

wheren is the number of jointsj¢*t and j;"*“*? are thei-
5. EXPERIMENTAL RESULTS th estimated and mocap joint positions, resp., @i the
radius of the minimum bounding ball of the point cloud, i.e.,
We use both synthetic and TI data to evaluate our methodve scale the skeleton so that the entire skeleton is inside a
Synthetic data is generated by sampling points from a polyguhit sphere. In the following paragraphs, we will compaee th
onal mesh animated using the mocap data from Carnegie Mejiuialities of our method in several scenarios.
lon University. Next, we study synthetic data because it pro _ With and without global constraints. We compare the
vides a ‘ground truth’ for us to evaluate our method. We studyifference between the tracking algorithm with and without
the quality of our skeleton-based compression on the TI datd'ticulation and global fitting constraints. Figure 5 shoat
with various levels of prediction residuals considered. Weglobal constraintsio have a significant influence on motion
also compare our skeleton-based compression to H.264 vid@stimation quality. . .
compression [25] and Yang et al.’'s method [4]. All the exper- Downsampling factor. In this experiment, we study how
imental results in this section are obtained using a Pensium Point size (% of downsampling) affects the motion estinmatio
3.2 GHz CPU with 512 MB of RAM. The best way to visual- quality. That is 10% downsampling means that only 1000
ize our results is via the videos which can be found from ouioints from a point set with 10,000 points are used for esti-

project page athttp://mww.cs.gmu.edu/~jmlien/research/T1/ mating motion. Figure 6 shows our experimental results. As
we can see from the result, the downsampling rate does not

have a significant influence on the quality (at least down to
5.1. Motion estimation of synthetic data 1% for this crouch & flip motion).
. . ) Noise level In this experiment, we study how noise af-
We study the robustness of our motion estimation using thregcts the quality. From Figure 7, itis clear that as we inseea
synthetic data sets: dance, crouch&flip, turn and tai chthEa the nojsiness of the points, the difference between the esti
frame in the synthetic data contains about 10,000 points, anyated motion and the “ground truth” increases. However, the

75% of the points are removed randomly to eliminate easyyera| difference remains small even for very noisy data.
correspondences. The table below shows a summary of the

averaged motion estimation frame rate. All motions can b

estimated in real time by our method. 5.2. Compressing Tl data

We evaluate the results of our compression method using four
motion dance ‘ crouché&flip ‘ turn ‘ tai-chi motion sequences captured by our Tl system. These motions
estimated| (Fig. 5) (Fig. 6) (Fig. 7) | (in video) are performed by two professional dancers, one student and
avg.fps [ 39.1fps[ 29.6fps [ 48.4fps| 61.3fps one tai-chi master. The data captured by our Tl system have
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Fig. 5. Top: The postures from (a) motion capture, and (b) es- time step
timation with global constraints and (c) without global constraints. . . . L .
Bottom: Tracking errors with and without global constraints. Fig. 7. Tracking errors with different noise intensities.

downsampling factor: crouch and flip

the input data and compressed data by the same camera in
s - the same frame. PSNR is defined a8log,, (-222), where

10% -- rm

10 gl rmse = /> |I; — J;|? is the root mean squared error of
. imagesI andJ. A larger PSNR indicates a better quality.

Typical PSNR values in image compression are between 20
and 40 dB. The results of our study are summarized in Ta-
. ble 1.
In Table 1, We also measure the qualify by varying the
levels of residual considered. We considered three compres
o 10 2 3w = o o a0 sion levels, i.e., compression without residuals and wit¥5
time step and 100% residuals. A compression withi residuals means
its residual maps are% smaller than the full residual maps.
Fig. 6. Tracking errors with different downsampling factors. ~ We see that encoding residuals indeed generates better reco
struction than that without residuals by 4 dB. Figure 8 pro-
vides an even stronger evidence that considering residials
about 7 to 9 thousand points in each frame. Because the Ways produces better reconstructions for all frames. Agroth
data is much noisier than the synthetic data and can have signportant observation is that the compression quality iesa
nificant missing or overlapping data, estimating motiomfro to be the same (around 30) for the entire motion. Figure 9
the TI data is more difficult, thus we use 50% of the initial shows that the difference is more visible when the predictio
point set as our model. The table below shows that we can stifesiduals are not considered.

0.06 T

100%

0.05 -

normalized error

maintain at least 10 fps interactive rate in all studied sase We would like to note that using PSNRs may not fully re-
flect the compression quality. For example, the compressed
motion dancer 1| dancer 2| student | tai-chi master data generated using no residuals looks much more robotic
‘ estimated| (Fig 2) ‘ (Fig 4) ‘ (in video) ‘ (Fig 9) and unnatural than that generated using only 25% residuals.
| avg. fps | 11.9fps | 11.5fps| 125fps [ 12.6fps |  This difference can be easily observed from the rendered ani

mation but not in Table 1.

Quality. Unlike synthetic data, we do not have a ground = Compression Ratia One of the motivations of this work
truth to directly evaluate the quality of our method using Tlis that no existing TI compression methods can provide high
data. Our approach is to compute the differences betweerompression ratios. In this experiment, we show that our
the point data without compression (callegbut data) and  skeleton-based compression method can achieve 50:1 (with
the datacompressed and decompressed using the proposed 100% residuals) to 5000:1 (without desiduals) compression
method (calledcompressed data). In order to measure the ratios. As we have shown earlier, our compression method
difference between these two point sets, we render images o&n provide different compression ratio by varying the lede
each point set from six (60 degree separated) camera viewsiiasiduals considered during encoding. To increase our com-
each time frame. Then, we compute the “peak signal-to-noispression furthermore, we use jpeg and png libraries to com-
ratio” (PSNR) for each pair of imagdd, J) rendered from press color and depth residuals, respectively. In additien



Table 1. Compression quality. The “peak signal-to-noise ratidBKHR) is computed between rendered images of the input and
compressed point data. PSNR is definec2sog, , (-222-), wherermse = /3, [I; — J;|? is the root mean squared error of

rmse

imagesI andJ. We also measure the quality by varying the levels of residoasidered. A compression witt{s residuals
means its residual maps ar& smaller than the full residual maps.

\ motion dancer 1 | dancer 2 student | tai-chi master
no residuals| 23.87dB | 24.10dB | 25.82 dB 26.27 dB

avg. PSNR| 25% residuals| 25.77dB| 26.18 dB| 27.96 dB 28.75dB
100% residuals) 27.95dB | 28.27dB | 29.91 dB 30.83dB

(@) (b) (d) (e)

Fig. 9. Reconstructions from the compressed data and their differences with¢tbenpressed data. (a) Uncompressed data. (b) Compressed
without residuals. (c) Difference between (a) and (b). (d) Congaesvith residuals. (e) Difference between (a) and (d).

taichi 6. DISCUSSION AND FUTURE WORK

T T
100% residuals  ©
no residuals 2
a

We proposed a skeleton-based compression method to con-
] vert point set data to a few motion parameters and a set of
- residual maps, whose size can be tuned adaptively according
to available space and time. Our motion estimation method,
ARTICP, can efficiently estimate the motions from synthetic
and Tl data at interactive rates (160 frames per second).

Despite our promising results, our method has limitations.
. = o o p—s P 200 First, we observed that our motion estimation fails whenynan
time step occlusions occurred. This problem becomes more serious
when multiple subjects appear in the scene. Second, we as-
Fig. 8. PSNR values from the tai-chi motion. Each point in the sume that points move under rigid-body transform and non-
plot indicates a PSNR value from a rendered image. For each timggid motions are usually comparatively small. Howeveis th
step, there are 12 points, which indicate 12 images rendered frogssumption becomes invalid when the subjects wear skirts or
two points with 100% and 0% residuals. long hairs. Third, although the quality of our compression
method is reasonable, its PSNR values are still low compared

to the current video compression standards. It is not clear a

compare our compression method to other compression metfy;jg point how our method can be improved to produce higher
ods including the method proposed by Yang et al.'s [4] an(huality results.

H.264 (we use an implementation from [25]). We summarize . - S
our experimental results in Table 2. Currently, we are exploring the possibility of estimating

We would like to note that because our method is fundaMotions from multiple targets. Our compression method can
mentally different from the other two methods, we can aghiev@/S0 Pe extended in several ways. For example, we would like
very high compression ratio while maintaining reasonadle r to investigate efficient ways to detect temporal coherence i

construction quality (as shown earlier). Both Yang et akid ~ O4" residual maps. One possible approach is to accumulate

H.264 are image (or video) based compressions, which talgsiduals from a few frames and compress them using video

color and depth images as their input and output. On the corfoMPression techniques.

trary, our skeleton-based compression converts the catbr a ~ Note that even though we focus only on the application
depth images to motion parameters and prediction residualg data compression in this paper, the result of this work can
Moreover, even though H.264 provides high quality and highalso be used broadly in applications including human dgtivi
ratio compression, H.264 is not a real-time compression forecognition and analysis [26, 27], marker-less motionwagpt
the amount of data that we considered in this work. and Ergonomics.

PSNR




Table 2. Compression ratio. Both Yang et al.’s [4] and H.264 (we usarglementation from [25]) compression methods took
the color and depths images as their input and output. The@ssion ratio of H.264 reported in this table is obtainedgis
75% of its best quality. We use jpeg and png libraries to casprolor and depth residuals, respectively.

(1]

(2]

(3]

[ motion [ dancer1] dancer2 ] student | tai-chi master |
[ size before compression [ 142.82 MB [ 476.07MB | 1.14 GB | 988.77 MB |
Yang et al. [4] 11.36 11.73| 10.23 14.41
compression H.264 [25] 64.04 53.78 32.04 49.58
ratio no residuals 1490.31 3581.52| 5839.59 5664.55
25% residuals 195.62 173.52 183.80 183.82
100% residuals 66.54 55.33 60.29 61.43
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