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Abstract

One common strategy for dealing with large, complex models is to partition them into pieces that are easier
to handle. While decomposition into convex components results in pieces that are easy to process, such de-
compositions can be costly to construct and often result in representations with an unmanageable number of
components. In this paper, we propose an alternative partitioning strategy that decomposes a given polyhedron
into “approximately convex” pieces. For many applications, the approximately convex components of this decom-
position provide similar benefits as convex components, while the resulting decomposition is both significantly
smaller and can be computed more efficiently. Indeed, for many models, an approximate convex decomposition
can more accurately represent the important structural features of the model by providing a mechanism for ignor-
ing insignificant features, such as wrinkles and other surface texture. We propose a simple algorithm to compute
approximate convex decompositions of polyhedra of arbitrary genus to within a user specified tolerance. This al-
gorithm measures the significance of the model’s features and resolves them in order of priority. As a by product,
it also produces an elegant hierarchical representation of the model. We illustrate its utility in constructing an
approximate skeleton of the model that results in significant performance gains over skeletons based on an exact
convex decomposition.
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EIA-0103742, EIA-9805823, ACI-0113971, CCR-0113974, EIA-9810937, EIA-0079874, and by the Texas Higher Education Coordi-
nating Board grant ARP-036327-017.



Figure 1: Each component is approximately convex (concavity less than 10 by our measure). There are a total of 17
components.

1 Introduction

Decomposition is a technique commonly used to simplify complex models into smaller sub-models that are
easier to handle. Convex decomposition divides polyhedra into convex components. Due to the important
properties of convex objects, many algorithms perform more efficiently on convex objects than on non-convex
objects. For example, mesh generation [24] and penetration depth computations [21] only have efficient solutions
for convex models. In general, convex decomposition has application in a diverse range of areas such as collision
detection [12], constructive solid geometry modeling [17], feature extraction [13], and mesh generation [24], to
name just a few.

In many applications, however, the detailed features of the model are not crucial and in fact considering them
only serves to obscure the important structural features and adds to the processing cost. In such cases, an
approximate representation of the model, such as our proposed approximate convex decomposition, that captures
the key structural features would be preferable. One important example is skeleton extraction. The skeleton
is a low dimensional object which essentially represents the “shape” of the higher-dimensional target object.
The process of generating such a skeleton is called skeleton extraction. One-dimensional skeletons extracted
from three dimensional objects have application in shape recognition [30], virtual world navigation [4], and
deformation [7]. One of the most important issues for extraction methods is their sensitivity to noise/turbulence
of the boundary [27, 31, 4, 30]. A well known skeleton extraction method, the Medial Axis Transform, suffers
this problem. In this paper, we demonstrate that significant profit gains result from using our approximate
decomposition for skeleton extraction.

Convex decomposition of three-dimensional polyhedra is traditionally done by iteratively removing the poly-
hedron’s “non-convex features” (called notches) in an arbitrary order. This operation, called notch resolution

or notch cutting, continues until all components are convex. Finding the minimum number of disjoint convex
components for a non-convex polyhedron is known to be NP-hard [26]. Using notch-cutting with only one cutting

plane for each notch, Chazelle [8, 9] shows that at most r2
+r+2

2
convex components will be generated, where r

is the total number of notches of the polyhedron. This method generates the worst case optimal O(r2) convex
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Figure 2: Large models from the Large Geometric Models Archive, Georgia Tech. Stanford Bunny. 35,947 vertices and
69,451 triangles. Dragon. 437,645 vertices and 871,414 triangles. Skeleton Hand. 327,323 vertices and 654,666 triangles.
Happy Buddha. 543,652 vertices and 1,087,716 triangles.

parts and uses O(nr3) time and O(nr2) space.
In this work, we are interested in the decomposition of large and complicated polyhedra containing many

notches. Due to hardware advances, such as faster CPUs and larger memories, the complexity of polyhedra used
in CAD, computer graphics, game development, and simulation is increasing [25, 6]. Moreover, models that are
created from range scanners and surface reconstruction normally consist of a huge number of triangles [15, 28].
For these detailed models, we observed that the proportion of edges that are notches becomes very large. For
example, in Figure 2, 40.6% of the 104,288 edges of the Stanford Bunny are notches, 57.3% of the 1,309,256 edges
of the dragon are notches, 57.3% of the 981,999 edges of the hand model are notches, and 54.5% of the 1,631,574
edges of the Happy Buddha are notches. Thus, in these models, roughly half the edges are notches. Assuming
there are n

2
notches, the standard notch cutting approach requires O(( n

2
)4) time and produces O((n

4
)2) convex

components. Therefore, for such models, resolving all notches to obtain a convex decomposition requires not
only an extremely expensive decomposition procedure, but also dramatically decreases the performance of the
applications which use the decomposition due to the huge number of tiny components.
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Figure 3: Upper: Each component is 50-approximate convex. There are 3 components. Lower: Each component is
20-approximate convex. There are 5 components.

1.1 Our Approach

In this paper, we propose a new approach to the decomposition problem. Our motivation is that for some
models and applications, some of the notches can be considered insignificant, and allowed to remain in the
final decomposition, while others are more important, and must be resolved. Intuitively, important notches
provide key structural information while insignificant notches have little effect on the application and, perhaps,
on visualization. Thus, our strategy is to identify and resolve the important notches. We develop a measure of the
importance of a notch that is related to the concavity of the polyhedron due to that notch. In particular, we define
a τ -approximate convex component to be a polyhedron whose concavity is at most τ (See Figure 4(a)); details
regarding the measurement of concavity are described in Section 4. Figure 2 shows the notch concavity distribution
for the models studied. As is easily seen, initially there are only a few notches that have large concavity. In
Figure 3, the bunny is decomposed into 50-approximate and 20-approximate convex components. This example
illustrates that resolving significant notches reduces the concavity of the remaining notches dramatically.

Thus, instead of looking for an optimal and exact solution in terms of complexity and convexity, respectively,
our method decomposes the given polyhedron into approximately convex components. With this approximation
approach, notches produced by wrinkles or boundary turbulence of detailed models will be ignored and only
important notches will be separated. As we will demonstrate, the number of resulting components can be
significantly less than with traditional exact decomposition approaches. The time complexity of the proposed
algorithms is a function of the tolerance and complexity/smoothness of the model. Smaller tolerances and
more jagged models result in higher time complexity. Furthermore, the cutting order of the notches in our
method produces a useful hierarchical representation of the polyhedron, where the approximation factor decreases
monotonically with the level in the hierarchy. Other benefits of and applications for this approximation method
are discussed in Section 4.

2 Related Work

Two-dimensional polygons. Many approaches have been proposed for decomposing two-dimensional poly-
gons, which is significantly easier than decomposing three-dimensional polyhedra. The problem of convex decom-
position is normally subject to some optimization criteria to produce a minimum number of convex components
or to minimize the internal length of the components. Convex decomposition methods can be classified according
to whether (1) the input polygon is simple (has no holes), and (2) Steiner points (additional vertices) can be
introduced during the decomposition.

For polygons with holes, under both the minimum components and the shortest internal length criterion, the
problem is NP hard when either allowing or disallowing Steiner points [22, 23, 20]. For polygons without holes,
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when Steiner points are not allowed, there exist O(r2n2) [16] and O(r2n log n) [20, 19] algorithms for generating
polygons with a minimum number of convex components. When Steiner points are allowed, Chazelle and Dobkin
[10, 11] use an Xk-pattern to remove k notches at once while creating no new notches. Their algorithm generates
a minimum number of convex components in O(n + r3) time. Using the shortest internal length criterion and
without generating Steiner points, Greene [16] developed an O(r2n2) time algorithm and Keil [19] presented an
O(r2n2 log n) time approach. When Steiner points are allowed, there are no known optimal solutions.

Three-dimensional polyhedra. Convex decomposition of three-dimensional polyhedra is not as well under-
stood as the two-dimensional case. Although this topic has been researched for a few decades, most of the work
focuses on refining the complexity requirements of Chazelle’s popular notch cutting approach. Indeed, Chazelle’s
approach has inspired many other researchers to find more robust and efficient implementations.

A notch of a manifold polyhedron is an edge with dihedral angle of at least 180◦, where the dihedral angle
of an edge is defined as the internal angle between its two incident facets. To resolve a notch, a cutting plane,
HP , passing through the notch separates the incident facets, f1 and f2, and results in a decomposition where the
dihedral angles of (HP, f1) and (HP, f2) are both less than 180◦ (See Figure 4(b).)

P

H

(a)

HP 1 HP 2

f1

f2

r

HP 1

f1

f2

HP 2

r

(b)

Figure 4: (a) This polygon is a τ -approximate convex component if the measurement of its concavity is less than τ . (b)
The dihedral angle of r is the internal angle of f1 and f2. Note that this angle is larger than the 180◦, r a notch. Both
HP1 and HP2 contain r but only HP1 cuts the dihedral angle of r into two less than 180◦ angles. HP1 is the cutting of r

and HP2 is not.

Chazelle [8, 9] shows that at most r2
+r+2

2
convex components will be generated if only one cutting plane is

used for each notch, ri, and its sub-notches, {rij}. Here rij is the j-th sub-notch generated by intersecting ri and
the cutting planes for rj , ∀i 6= j. His method works by cutting all notches with cutting planes in an arbitrary
order. Therefore, the main issue of convex decomposition becomes how the polyhedron can be cut by a given
plane. First, the intersection of the plane and the polyhedron, W , is a set of simple polygons with holes which
may enclose other polygons. Since these polygons do not overlap, a tree structure of these polygons can be built
in O(k log k) time with k vertices in W . For a polygonal chain, p, a polygonal chain q is p’s ancestor if q contains p

directly or indirectly, and a polygonal chain r is a child (descendant) of p if r is contained in p directly (indirectly).
This is called the polygon nesting problem. This structure helps locate the polygon, s, in W that contains the
notch to be cut and all polygons inside s. The cutting process is then done by splitting the edges and faces that
intersect the cutting plane and that contain the polygon s and descendants of s. His method generates the worst
case optimal O(r2) convex parts and uses O(nr3) time with O(nr2) space.

The notch cutting approach proposed by Bajaj and Dey [3] considered non-manifold models which may contain
notches with isolated vertices and edges, or non-manifold vertices and edges and reflective edges with dihedral
angles greater than 180◦. Since their plane cutting approach will generate non-manifold polyhedra even if the
initial model is manifold, each cutting procedure starts decomposing the model by removing non-manifold features
and then resolves a reflective edge using its plane cutting. By using [1] to solve the polygon nesting problem

and more careful analysis, they achieved a convex decomposition in O(nr2 + r
7

2 ) time with O(nr + r
5

2 ) space.
They also provide a similar but robust algorithm which operates under finite precision arithmetic computations
in O(nr2 + nr log n + r4) time.

Hershberger and Snoeyink [17] recently obtained O(nr + r
7

3 ) worst-case time complexity by studying the
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complexity of the horizon of a segment in an incrementally constructed erased arrangement of n lines.

3 Preliminaries

In this section, we define the notation used in this paper.
A manifold polyhedron P represented by its boundaries ∂P consists of a set of vertices, a set of ridges, and a

set of facets, where ∂P = {∂P0, ∂P1, . . . , ∂Pt} is a set of disjoint 2-manifold boundaries and ∂P0 is the outer-most
boundary and ∂Pi≥1 are hole boundaries of P . For simplicity, and without loss of generality, we will assume that
the space enclosed by ∂Pi≥1 is empty.

The convex hull of P , H, is the smallest convex set of vertices of P . Let H be the boundary of H, i.e. H = ∂H.
P is said to be convex if H = P . A set of components is said to be a partition of P if PART(P ) = {Ci |

⋃
i Ci =

P and
⋂

i Ci = ∅}. Then a convex decomposition of P is a partition of P that contains only convex components,
i.e., CD(P ) = {Ci ∈ PART(P ) | Ci is convex, ∀i}.

A traditional way to generate convex decomposition is to cut notches iteratively in arbitrary order. However,
to cut P , it is more intuitive to start the cut from the most visually noticeable features, such as the most dented
or bent area or the area with branches. We denote this property as concavity and use concave(r) to denote some
measure of the concavity of the notch r. The concavity of a polyhedron is the maximum concavity of its notches
(i.e. concave(P ) = maxr∈P (concave(r)).) The significance of a notch is provided by the measurement of its
concavity. That is a notch r is visually important if concave(r) is large.

P is a τ -approximate convex if concave(P ) is less than τ (See Figure 4(a).) Note that if P is 0-approximate

convex, then P is convex. The τ -approximate convex decomposition of P is defined as a partition that contains
only τ -approximate convex components; i.e., CDτ (P ) = {Ci ∈ PART(P ) | concave(Ci) ≤ τ, ∀i}. When τ = 0,
CDτ (P ) is equal to CD(P ). The goal of this paper is to generate τ -approximate convex decompositions.

To measure concavity, we are interested in the relationship between bridges and pockets of P . Let fH be
a facet of H. fH is a member of a bridge of P iff fH \ ∂P is not empty, i.e., fH does not entirely lay on the
boundary of P . The bridge of P is then defined as : bridge(P ) = {fH | fH ∈ H and fH \ ∂P 6= ∅}. Let fP be a
face of ∂P . fP is an element of the pocket of P iff fP \H is not empty. Therefore the pocket of P is defined as :
pocket(P ) = {fP | fP ∈ ∂P and fP \ H 6= ∅}. For convenience, we indicate a member of bridge(P ) (pocket(P ))
as a bridge (pocket). Note that the incident faces of a notch of P must be in pocket(P ). Examples of bridges
and pockets for a two-dimensional case are shown in Figure 7(a) and for a three-dimensional case are shown in
Figure 9(a).

Now, we define notation used for separating P into two components for a given cutting plane, HP . Let Fi

be a set of facets in ∂Pi that intersect HP and Ii be the intersection of Fi and HP . Ii contains a set of points
in two dimensions and a set of polygons with holes and islands in three dimensions. Since facets in ∂P do not
intersect each other, for any given pair, Fi and Fj , we must be able to determine if Fi is completely in Fj or
not. Let C(Ii) denote a set of points on HP enclosed by Ii. Fi is inside Fj if and only if Ii ∈ C(Ij). This

relationship helps fill holes after separating P . Let F̂i be a sub-set of facets in Fi that separate ∂Pi into exactly
two sub-boundaries if facets in F̂i are all split. Notice that F̂i is not unique for a given Fi. Let the intersection
of F̂i and HP be Îi. A polygonal example is provided in Figure 6(b).

4 Approximate Convex Decomposition

In this section, we propose possible approaches for measuring polyhedral concavity and sketch a framework
algorithm (Algorithm 4.1) for approximating convex decomposition. The algorithm itself is very simple. Details
for 2D polygons and 3D polyhedra will be provided in later sections.

4.1 Measurement of Concavity

In contrast to radius, surface area, and volume, concavity itself does not have a well defined meaning. Hence,
we need a quantitative way to measure the concavity of a notch, and therefore of a polyhedron. In this paper,
we use the distance from the notch to the convex hull of the model to represent the concavity (i.e. concave(r) =
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dist(r,H)) since convexity properties are more well defined. This distance tells us how far the notch is away from
the convex hull.

Let retraction(r,H, t) : H → H denote the function that defines the trajectory of the notch r when r is retracted
from its original position to H. When t = 0, retraction(r,H, 0) is r itself. When t = 1, retraction(r,H, 1)
is the final position of the notch on H. Thus, the dist(r,H) can be computed by integrating the function
retraction(r,H, t) from t = 0 to 1. An intuition of this distance definition is illustrated in Figure 5(a). Think of
P as a balloon which is placed in a mold with the shape of H. Although the initial shape of this balloon is not
convex, the balloon will become so if we keep pumping air into it. Then the trajectory of a point on P to H can be
defined as the path traveled for a point on the balloon from initial shape to its final shape. Although the intuition
is simple, a retraction path such as path a in Figure 5(a) is not easy to compute. It may be approximated as path

b.
Note that, by pumping air, points on the hole boundary will not touch H, the concavity of notches in holes,

will be infinity. To resolve these notches, denoted by rhole, we use the fact that holes will “vanish” to curves or
a curved surfaces in the final shape, and this vanished hole can be a guide to find the cutting plane to resolve
rhole. Since the cutting plane will be part of the convex hull of the new components, the concavity of rhole in new
components can be estimated as the distance from rhole to the cutting plane. To minimize this concavity, we try
to align the cutting plane with the vanished hole. Figure 5(b) shows a vanished hole and two possible cutting
lines to resolve this hole. The concavity of the notches in the new components created using HP1 will be less
than that using HP2.

ab

Pump in air

dist(r,H)
(a)

HP 1
HP 2

vanished hole
(b)

Figure 5: (a) The initial shape of a non-convex balloon (shaded). The bold line is the convex hull of the balloon. When
we inflate the balloon, points not on the convex hull will be pushed toward the convex hull. Path a denotes the trajectory
with air pumping and path b is an approximation of a. (b) The hole vanishes to a curve and vertices on the hole boundary
will not touch the convex hull.

4.2 Framework Algorithm

Algorithm 4.1 Approx CD(P, τ)

Input. A polyhedron, P , and tolerance, τ .
Output. max(concave(Ci)) ≤ τ , P =

⋃
N

i=1
Ci and

⋂
N

i=1
Ci = ∅.

1: Build the convex hull, H, for P .
2: Let r be the notch with maximum dist(r, H).
3: if dist(r, H) < τ then

4: return P .
5: end if

6: Let HP be the cutting plane of r. HP bisects P into P1 and P2.
7: return Approx CD(P1,τ) and Approx CD(P2,τ).
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Algorithm 4.1 describes a divide-and-conquer strategy to decompose P into a list of τ -approximate convex
pieces. The algorithm first computes the convex hull of P and finds the notch, r, with the maximum distance
away from the convex hull. A hyperplane is then defined to resolve r and separate P into two components P1

and P2. The combination of the results of the two recursive calls for P1 and P2 will be our final answer. The
recursion terminates when the distance from r to the convex hull is less than τ .

Note that this recursive approach is different from cutting notches with large concavity to small concavity
iteratively because the notch concavity (but not the notch) will change after every cut. Moreover, this algorithm
requires the cut to separate P into two pieces instead of only resolving a notch which may or may not separate
P as in [8, 9, 3].

For a given notch r and its cutting plane HP , Algorithm 4.2 separates P into P1 and P2. The first step of
Algorithm 4.2 computes the facets of ∂P0 that intersect HP and have r in its enclosing space C(Î0). Next, for

each hole boundary ∂Pi, ∀i ≥ 1, if ∂Pi intersects HP and its intersection is inside F̂0, we will compute and split
facets in F̂i. The last step in this separation process fills holes and group boundaries in P1 and P2.

Note that it is necessary to maintain the manifold property for decomposed components. Even if the input
polyhedron is manifold, it is possible to generate non-manifold components [3]. In Figure 6(a), the vertex s

is 2-manifold before the polyhedron is decomposed by resolving notch r but may not be so after the cutting.
Disturbing s to above or below HP can prevent this from happening.

Algorithm 4.2 Separate(P , HP , r)

Input. A polyhedron, P , a cutting plane HP , and a notch r.
Output. HP bisects P into P1 and P2.
1: Compute F̂0 from ∂P0 so that r ∈ C(Î0).

2: Split all facets in F̂0.
3: for each hole boundary ∂Pi, ∀i ≥ 1 do

4: if F̂i of ∂Pi is not empty and Îi ∈ C(Î0) then

5: Split all facets in F̂i.
6: end if

7: end for

8: Fill holes from splitting and classify boundaries into P1 and P2.

This framework provides an O(nr̂(τ)3 + r̂(τ) ∗ n log n) time algorithm, where r̂(τ) is number of cuts required
to generate τ -approximate convex components; note there will be r̂(τ) + 1 such components. This value depends
on the complexity (smoothness) of the model and the tolerance τ . The time for measuring the concavity is
r̂(τ) ∗ n log n. Each of the r̂(τ) concavity measurements involves an O(n log n) convex hull calculation.

4.3 Benefits of the Framework

Algorithm 4.1 has several advantages. First, approximate decomposition will reduce the number of unnecessary
cuts which generate numerous insignificant pieces and degrade the performance of the decomposition itself and
its applications. Decomposed components also convey this important property. In addition, level of detail (LOD)
which is normally used in terms of visualization can also be applied to simulate the use of different tolerance rates.
Usually, simulations like physically-based animation can tolerate less accurate results when the simulated objects
are far away or not in the region of interest. In this case, a rough decomposition will be sufficient. Therefore,
this LOD for simulation can be adaptively achieved by refining the decomposition approximation using a smaller
τ when higher accuracy is required and retrieving coarser level in decomposition hierarchy. The value for τ can
be specified according to the image size rendered on the screen.

Second, due to the recursive nature, the resulting decomposition is a hierarchical binary tree. The convex hull
of the original model P is the root of the tree which has two children as convex hulls of P1 and P2. Leaves of the
tree are approximate convex components. This kind of representation has useful properties and is used in many
areas like virtual reality for scenes graph and constructive solid geometry (CSG) for set operations and collision
detection for fast rejection.

Third, as an example in pattern recognition, features are extracted from images, polygons, and polyhedra to
represent the shape of the objects. This process (skeleton extraction) is usually affected by the turbulence of the
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boundary which reduces the quality of the extracted features. The proposed approximate method can improve
the quality by extracting a skeleton from the convex hull of the decomposition components. The same idea can
be applied to other problems to avoid boundary turbulences.

An implementation of Algorithm 4.1 and 4.2 for two and three dimensional models is described in Section 5
and 6, respectively.
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Figure 6: (a) Vertex s will be non-manifold after r is resolved. It is necessary to maintain the manifold property for
decomposition components. (b) An example of polygon with holes. P0 is the polygonal chain and P1 to P4 are boundary

of holes. e1, . . . , e12 are intersecting edges. F0 = (e1, e4, e5, e12) and F̂0 = (e5, e12). F̂1 = (e8, e11).

5 Convex Decomposition of 2D Polygon

Although there are optimal solutions for two-dimensional polygon decomposition under certain criteria, our
algorithm is easier and more easily demonstrated in two-dimensional examples. The ideas are useful for two-
dimensional problems also help us understand three-dimensional problems.

A simple polygon, P , with an arbitrary number of holes can be represented by a list of polygonal chains.

5.1 Measurement of Concavity

In this section, we will discuss how the dist(r,H) is defined in Section 4 and Figure 5 can be achieved for
polygons. Recall that each pocket can be associated with exactly one bridge and notches will only show up in
pockets. We approximate the notch r on ∂P0 by computing the straight-line distance from r to the bridge of
hosting pocket of r. Let the vertices in the outer most polygonal chain of P be numbered from 0 to n− 1 as their
id and if vertex vi and vertex vj are connected then |id(vi) − id(vj)| must be one, here id(vi) is the numerical id
of vi.

1

2

3
4 5

6
7

80

9

Pocket Bridge

Pocket

Bridge

dist(r,H)

(a)

Principle Axis

COM
dist(r,H)

(b)

Figure 7: (a) Edges (8,1) and (5,7) are bridges, and (5,6) and (8,9), (9,0), (0,1) are both pockets. dist(9,H) is the distance
from vertex 9 to the line defined by (8,1). (b) COM is the center of mass of all vertices on the hole boundary. The principal
axis is the cutting line of this hole.
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To find bridges and pockets, each vertex on the convex hull is examined iteratively. If the difference between
the id of the current vertex vi and the id of the previously examined vertex vj is larger than one, edge (vj , vi) is
a bridge and the edges containing vertices with ids from id(vj) + 1 to id(vi) − 1 are in the pocket. Figure 7(a)
illustrates this process. Algorithm 5.1 shows how to compute distances to the convex hull for notches on the outer
most boundary. After the most concave notch r is identified, the cutting line, HP , is selected to align with the
vector ~nf1 + ~nf2 and passing through r, i.e., ~nf1 and ~nf2 are normals of incident edges of r.

Algorithm 5.1 Dist2Hull(∂P0,H)

Input. The out-most boundary of P and its convex hull H.
1: Find all bridges on H and pockets on ∂P0.
2: for each bridge, b, and pocket, p do

3: Let a line l align with b.
4: for each notch r in p do

5: Compute distance from r to l.
6: end for

7: end for

The notches on hole boundaries have infinite concavity. To resolve these notches, we need to find a cutting
line that reduces the concavity of these notches to be finite. In fact, any line penetrating the hole and splitting it
into two parts can reduce the concavity to finite. Our goal to this problem is to find a cutting line that minimize
the resulting concavity.

As mentioned in Section 4.1, the best candidate is the cutting line that aligns with the vanished hole. Nev-
ertheless, computing a vanished hole is expensive. To avoid computing the vanished hole, we approximate this
cutting line by computing the principal axis of the hole (See Figure 7(b).) The Principal axis for a given set of
points can be computed as the Eigen vector with the largest Eigen value from the covariance matrix of these
points. Algorithm 5.2 computes a cutting line for notches in the hole. After a hole is resolved, these notches
will become part of the outer most boundary of the new polygon and their concavity can be measured using
Algorithm 5.1.

Algorithm 5.2 CuttingLine For Hole(∂Pi)

Input. The hole boundary ∂Pi of P , i > 0.
1: Compute principal axis, pa, from ∂Pi

2: Report pa as the cutting line.

5.2 Split Polygon

To separate P into two components using this HP , we need to (1) compute F̂0 with r ∈ C(Î0), (2) find ∂Pi

enclosed by C(Î0) for i > 0, and (3) split the intersecting edges, fill the hole, and classify the boundaries into two
components.

To compute F̂0 that contains r in its enclosing area, we first find all the edges on ∂P0 that intersect HP . Then,
from this list, we find the edge el

0 that is closest to the left side of r and the edge er
0 that is closest to the right

side of r along HP . Finally, let F̂0 be {el
0, e

r
0}. F̂0 in Figure 6(b) is {e5, e12}.

For a given hole boundary ∂Pi, we can check if the intersecting edges of ∂Pi are enclosed in C(Î0). If so, F̂i

then is identified by the left most edge and er
i and the right most edge er

i along HP . In the Figure 6(b), F̂1 is

e8, e11 and F̂2 is e5, e6 for P1 and P2, respectively.
In the last step, all edges in F̂0 and F̂i are ordered and every consecutive pair of edges, ei and ej , is split and

connected. In the Figure 6(b), (e5, e6), (e7, e8), (e11, e12) are pairs that will be split and connected. To classify
boundaries into two groups, P1 and P2, a sweep line approach [2] can solve this polygon nesting problem. The
two dimensional implementation of Algorithm 4.2 is sketched in Algorithm 5.3. Figure 8 shows two examples of
decomposition with different thresholds. It is notable that the number of decomposed components is much less
than the number of notches.
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(original) (τ = 2) (τ = 1) (τ = 0.5)

(original) (τ = 2) (τ = 1) (τ = 0.5)

Figure 8: Up : The original polygon has 452 vertices and 211 notches. When τ = 2, there are 18 convex components.
When τ = 1, there are 26 convex components. When τ = 0.5, there are 36 convex components. Down : The original
polygon has 487 vertices and 269 notches and one hole. When τ = 2, there are 7 convex components. When τ = 1, there
are 11 convex components. When τ = 0.5, there are 16 convex components.

Algorithm 5.3 Separate2D(P , HP , r)

1: F̂0 ← el

0 and F̂0 ← er

0.
2: for each hole boundary ∂Pi, ∀i ≥ 1 do

3: if el

i and er

i are enclosed by el

0 and er

0 then

4: F̂i ← el

i and F̂i ← er

i .
5: end if

6: end for

7: Sort edges in F̂0 and F̂i and split each consecutive pair of edges.
8: Classify boundaries into P1 and P2.

6 Convex Decomposition of 3D Polyhedron

The abstract topological map [29] is used to represent the boundaries of a polyhedron P .

6.1 Measurement of Concavity

Similar to the polygonal case, the concavity of the notch r on ∂P0 is measured by computing the distance from
r to the bridge of the hosting pocket of r. However, unlike the polygonal case, pockets and bridges do not have
a one-to-one correspondence in the polyhedral case (See Figure 9.) A notch is directly or indirectly connected
to multiple bridges. This means that there is more than one way for a notch to retract to H, but only one of
the retractions conveys the most meaningful concavity measurement. Simply determing the maximum or the
minimum distance will not obtain the information we want. For example, in Figure 9(b), notch r can be retracted
in four possible directions to four different bridges (i.e., bridge a, b, c, and d.)

In fact, retraction is a global operation. This means that the retraction direction of a notch is affected by
the retraction directions of other notches. For instance, in Figure 9(b), if notch r is retracted in direction b, the
notch t is more likely to be retracted in the similar direction, otherwise the trajectories of t and r will intersect.
However, pushing t in the direction of b actually increases the concavity of t. Only the direction that retracts to
the bridge c is more natural.

We propose a simple heuristic (Algorithm 6.1) to associate a notch with one single bridge, and then the
concavity is the straight-line distance from the notch to that bridge. Let b ∈ bridge(P ) and eb = (pb, qb) be an
edge of b defined by end points. Then we compute a shortest path on ∂P0 from pb to qb and do so for all edges
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a

t r
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Figure 9: (a) An example of pockets and bridges. (b) Notch r can be retracted to H in four possible directions, (c)
Partition ∂P based on bridges.

of b. Finally, the notches enclosed in these paths of b are now associated with b only. After applying this to all
bridges of P , ∂P0 is partitioned into patches. Figure 9(c) illustrates the result of this process.

Algorithm 6.1 Dist2Hull(∂P0,H)

Input. The out-most boundary of P and its convex hull H.
1: Find all bridges on H and pockets on ∂P0.
2: for each bridge b do

3: for each edge e = (p, q) of b do

4: Find the shortest path on ∂P0 from p to q.
5: end for

6: end for

7: for each notch r do

8: Find which patch r belongs to and compute distance to its bridge.
9: end for

The concavity for the notch r on ∂Pi, i > 0, is infinite. As in Section 5.1, the cutting plane is selected as the
principal plane of the vertices on ∂Pi.

6.2 Split Polyhedron

hole boundary cutting plane

handle

p

q

(a) (b) (c)

e

notch

c

d

b

a

Cutting Plane

(d) (e)

Figure 10: (a) The side view of the polyhedron. (b) The out-most boundary of the polyhedron. (c) The hole boundary
of the polyhedron. (d) The intersection between cutting plane and the polyhedron. (e) The polyhedron is separated into
two sub-components.

After the cutting plane is selected, we are ready to cut P . Our goal is to (1) split P into exactly two sub-
components, and (2) maintain the manifold property. We use the same technique used in Section 5.2 to satisfy
both requirements.
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To bisect P , similar to the polygonal case, we need to (1) compute F̂0 with r ∈ C(Î0), (2) find ∂Pi enclosed

by C(Î0) for i > 0, and (3) split the intersecting facets, fill the hole, and classify boundaries to sub-components.
The polyhedron in Figure 10 will be used to illustrate this splitting process.

F̂0 is a set of facets of ∂P0 that contains r in its enclosing area C(Î0). An example of I0 is shown by the

solid-line boundaries in Figure 10(d). Algorithm 6.2 sketches the process to compute F̂0 from F0. First we find
the smallest polygon in I0 that encloses r or has r on its boundary and split the facets along this polygon. Then,
all the other polygons are tested iteratively until ∂P is bisected. In our example, F̂0 will contain two polygons
(c) and (d) and polygon (a, b) will be ignored.

Algorithm 6.2 FindF̂0(F0, r)

1: Let s be the smallest polygon in I0 that encloses r.
2: Split facets in F0 along s and put these facets into F̂0.
3: Let p and q be vertices on different side of s.
4: while p and q are connected do

5: Let t be an unhandled polygon and split facets in F0 along t.
6: if (p and q are disconnected) or (∂P0 is not split) then

7: Put split facets into F̂0.
8: end if

9: end while

To split the hole boundary ∂Pi, i > 0, that is enclosed in F̂0, Îi only contain boundaries that are not enclosed
in any other boundaries in ∂Ii. In Figure 10(d), boundaries in Ii are shown as dashed lines and e is the only

member of Îi and all other boundaries contained in e are ignored. F̂i contains facets that is split along boundaries
in Îi.

In the last step, all facets in F̂0 and F̂i are ordered into a nesting hierarchy. From this hierarchical tree, we fill
holes enclosed by boundaries in level 2i and level 2i + 1. For instance, we need to fill the hole enclosed by d and
e which are from level 0 and 1 in the hierarchy. Remaining hole boundaries will then be classified into P1 and P2

using sweep plane technique to solve the polyhedral nesting problem.

Algorithm 6.3 Separate3D(P , HP , r)

1: Compute F̂0 by invoking Algorithm 6.2.
2: for each hole boundary ∂Pi, ∀i ≥ 1 do

3: if Fi is enclosed in F̂0 then

4: Split facets along all out-most boundaries and put these facets into F̂i.
5: end if

6: end for

7: Build nesting hierarchy from all facets in F̂0 and F̂i.
8: Fill holes and classify boundaries into P1 and P2.

Decomposition examples are shown in Figure 11, 12, and 13. It is clear that number of decomposition
components is far less than the number of notches, and these components have strong visual effect, such as legs,
the tail, and the head that can be easily identified in Figure 12.

7 Skeleton Extraction

We present a novel skeleton extraction method to demonstrate the power of our approximate convex decompo-
sition. The Medial Axis Transform is the most well studied skeleton extraction method [5]. However, due to its
high complexity in computation and structure, and sensitivity to noise, the Medial Axis is generally not a good
shape descriptor for three-dimensional objects.

Recently, researchers focus on extracting one-dimensional skeletons from three-dimensional models. Neverthe-
less, most proposed methods are extended from two dimensional approaches. These methods either explicitly or
implicitly use image (voxel) based modeling during skeleton extraction. [27, 4] explicitly using models obtained
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(original) (τ = 4) (τ = 1) (τ = 0.5)

Figure 11: The original polygon has 2400 edges and 555 notches and one hole. When τ = 4, there are 4 convex components.
When τ = 1, there are 12 convex components. When τ = 0.5, there are 19 convex components.

(original) (τ = 4) (τ = 1) (τ = 0.5)

Figure 12: The original polygon has 3157 edges and 1077 notches and one hole. When τ = 4, there are 2 convex
components. When τ = 1, there are 11 convex components. When τ = 0.5, there are 18 convex components.

from MRI and CT data sets, and [31, 30] use boundary represented polyhedral models but implicitly use grid
points enclosed to trace out skeletons. All image based approaches suffer from same problem: How fine should
the voxel be? Coarse voxels tend to produce disconnected skeletons which lose the topology information of the
original model. Fine voxels require more processing time. Determining the size of the voxel is not a trivial task.
Without voxelizing the model, Lazarus and Verroust [14] extract the skeleton from polyhedral surfaces using Level

Set Diagram. However, their method cannot deal with models with handles and the skeleton generated might
penetrate surface.

Figure 14 shows our skeleton extraction process. For a given polyhedron P , the skeleton, S, is the Principal

Axis (PA) of the convex hull of P . This is based on the fact that the PA of the convex object C must be inside
C and represent a fairly good skeleton of C. We expect the same result for P if P is a τ -approximate convex
and τ is small. Next, the quality of S is measured, i.e., S should not intersect P and should stay in the center
[27, 4, 30]. If S is good enough, S is reported as the skeleton of P . Otherwise, P is decomposed into P1 and P2

and the skeleton of P is the combination of the skeletons of P1 and P2. Two skeletons are connected through the
center of the intersection of P and the cutting plane that split P (See Figure 14.)

Figure 15, 16, and 17 illustrate the evolution of skeletons. Note that, unlike image-based methods which
uniformly process all grids, our method saves time in the easy area and concentrates on refining the difficult area,
i.e., the highly twisted area. Moreover, our method is robust in terms of shape description. We added noise to
the boundary of the testing models. Although not quantitatively measured, the quality of the resulting skeletons
is equally good as those without noise.
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(original) (τ = 6) (τ = 2) (τ = 0.5)

Figure 13: The original polygon has 3360 edges and 1055 notches and one hole. When τ = 6, there are 8 convex
components. When τ = 2, there are 22 convex components. When τ = 0.5, there are 55 convex components.

recursive call

P 2P 1Compute Skeleton from H

Check Quality Merge Skeletons

P

Decompose to

output skeleton

no

H

PA(H)

COM

Figure 14: Left : Flow chart of skeleton extraction. Right: Merging two skeletons.

8 Conclusion

An approximate convex decomposition is presented. We show that most notches of complex models are
insignificant in terms of visualization and simulation. Therefore, if some accuracy can be sacrificed, we can
handle more practical problems. The significance of a notch is identified by calculating its concavity. We defined
the concavity as the distance from the notch to the convex hull of the polyhedron. The decomposition starts by
finding the notch with maximum concavity. If the maximum concavity is not tolerable, we resolve the notch and
split the polyhedron into two components. Otherwise, this polyhedron is approximately convex.

In addition to efficiency, approximate convex decomposition has other interesting advantages, such as level of
detail, a hierarchical structure, and insensitivity to noise. We believe that not only many applications, such as
collision detection, physically-based simulation, and mesh generation, can benefit from these properties, but that
we also need new applications inspired by this new approach, e.g. skeleton extraction and model simplification.
In particular, skeleton extraction is used to demonstrate the power of our proposed approach.

Our future work will focus on refining the skeleton extraction process. By selecting the cutting plane carefully,
we can further reduce the number of cuts required and therefore generate better skeletons. Little work has been
proposed for this problem [18]. Another problem we will study is model simplification. The convex hull is known
as one type of simplification. However, it has not been applied to practical problems. Figure 18 shows that model
simplification can be performed by taking the union of the convex hulls of approximately convex components.
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Figure 15: Up: The skeleton evolving during the decomposition. There are three holes in the polygon. Down: Vertices
position is disturbed by Gaussian noise.
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