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1. INTRODUCTION

Decomposition is a technique commonly used to break
complex models into sub-models that are easier to han-
dle. Convex decomposition, which partitions the model
into convex components, is interesting because many al-
gorithms perform more efficiently on convex objects than
on non-convex objects. One issue with convex decomposi-
tions, however, is that they can be costly to construct and
can result in representations with an unmanageable num-
ber of components. In many applications, the detailed fea-
tures of the model are not crucial and in fact considering
them only serves to obscure important structural features
and adds to the processing cost. In such cases, an approx-
imate representation of the model that captures the key
structural features would be preferable.

Motivated by such issues, we propose a partitioning
strategy that decomposes a given 2D or 3D model into
“approximately convex” pieces. We propose a simple algo-
rithm that computes an approzimate convex decomposition
(ACD) of a polygon or a 3D polyhedron. It proceeds by
iteratively removing (resolving) the most significant non-
convex feature (notch) until all components meet a user
specified convexity tolerance. As a by product, it pro-
duces an elegant hierarchical representation that provides
a series of ‘increasingly convex’ decompositions.

We have implemented our general approach for comput-
ing ACDs for polygons in the plane [2] and for polyhedra
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Figure 1. This model has 243,442 triangles and 141,837 notches.
Left: Exact convex surface decomposition — 44,461 components.
Right: Approximate convex surface decomposition — 20 compo-
nents (concavity < 0.05).

Figure 2. Both models are decomposed into 0.1-approximate con-
vex components. The elephant and the bunny are decomposed
into 14 and 10 components, respectively.

in three-dimensions [1]. In the next sections we briefly de-
scribe our approach and then present some experimental
results. Please see the above cited papers for more details.

2. OUR APPROACH

Our approach is based on the premise that for some models
and applications, some of the non-convex (concave) fea-
tures can be considered less significant, and allowed to
remain in the final decomposition, while others are more
important, and must be removed (resolved). Accordingly,
our strategy is to identify and resolve the non-convex fea-
tures in order of importance. Due to the recursive applica-



tion, the resulting decomposition is a hierarchical binary
tree. If the process is halted before convex components
are obtained, then the leaves of the tree are approximate
convex components. Thus, our approach also constructs
a hierarchical representation that provides multiple Lev-
els of Detail (LOD). A single decomposition is constructed
based on the highest accuracy needed, but coarser, “less
convex” models can be retrieved from higher levels in the
decomposition hierarchy when the computation does not
require that accuracy.

Our goal is to generate T-approximate convex decompo-
sitions. For a given model P, P is said to be T-approxzimate
convex if concave(P) < 7, where concave(p) denotes the
concavity measurement of p. Here, 7 represents a tun-
able parameter denoting the non-concavity tolerance for
the application. A T-approximate convex decomposition
of P, CD,(P), is defined as a decomposition D(P) that

contains only T-approrimate convex components; i.e.,
CD-(P) ={C; | C; € D(P) and concave(C;) < 7}. (1)

The success of our approach depends critically on the
quality of the methods we use to prioritize the importance
of the non-convex features. Intuitively, important features
provide key structural information for the application. Al-
though curvature has been one of the most popular mea-
sures used to extract visually salient features, it is quite
unstable because it identifies features from local variations
on the model’s boundary. In contrast, the concavity mea-
sures we consider for computing ACDs identify features
using global properties of the boundary.

We define the concavity of a point x on P as the distance
from x to H, the convex hull of P. Then, the concavity of
P is defined as the maximum concavity of its vertices. For
polygons, a notch (concave feature) z is enclosed by exactly
one line segment 3 of the convex hull H. In our methods,
we measure the concavity by computing the distance from
z to f; in [2] we propose and compare three methods for
computing dist(z, 3). For polyhedra, a notch z may be
enclosed by more than one facet of the convex hull H of
P. To identify which hull facet is closest to x, we project
the hull facets onto P and find the facet that covers x. See
Figure 3.

Figure 3. Associating convex hull facets (left) with vertices (right).
A set of facets are grouped and projected onto P together.

After the concavity is measured, the model is decom-
posed if its concavity exceeds the threshold 7. To decom-
pose a polygon, a diagonal is added to the vertex with max-
imum concavity. To decompose a polyhedron into solid
parts, the model is bisected by a cut plane incident to the

S
o1z
014

016

018

UU 01 02 03 DdA 05 06 07 08

Figure 4. A line (the arrow) on the Stanford Bunny is mapped
to the plot (left). Features are identified from this line and are
marked as dots. Red dots on the bunny show the features found.

(b)

Figure 5. (a) Red dots are identified features. (b) Dark area
indicate high concavity regions. (c) High concavity features are
connected and the model is decomposed along these paths.

most concave notch. To decompose a polyhedron into ap-
proximately convex surface patches, the model is cut along
“concave” paths on the model’s surface that are projec-
tions of edges bounding convex hull facets. Figures 4 and
5 show this process.

3. RESULTS

In the video, we show approximate decompositions com-
puted by our method for polygons, with or without holes,
and for polyhedra. In three-dimensions, we show examples
of decomposing the polyhedron into approximately convex
solid components and for partitioning its surface into ap-
proximately convex surface patches. From our experimen-
tal results, we observe that if an application can sacrifice
a little convexity, then our algorithm can produce fewer
components than the exact convex decompositions in sig-
nificantly less time. Figure 1 shows the difference between
exact and approximate convex surface decomposition.

Another important feature of our approximate convex
decomposition is its ability to identify key structural fea-
tures of the model. For instance, the Stanford Bunny and
the elephant model in Figure 2 are decomposed into sub-
models that reflect anatomical structures.
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