Arrangements of Lines

- L is a set of n lines in a plane

- An arrangement $A(L)$ of L is the subdivision of a plane by L

- The complexity of $A(L)$ is the total number of vertices, edges, and faces of the subdivision
Simple Arrangements

• An arrangement is simple if it does not contain
 – parallel lines
 – 3 or more lines with a common intersection point

Question:

Complexity of simple arrangement vs. Complexity of non-simple arrangement
Complexity of Arrangements

• For a set L of n lines on a plane and their arrangement $A(L)$:
 – number of vertices in $A(L) = \frac{n(n - 1)}{2}$
 – number of edges in $A(L) = n^2$
 – number of faces in $A(L) = \frac{n^2}{2} + \frac{n}{2} + 1$

Total complexity of an arrangement is $O(n^2)$
Complexity of Arrangements

- For a set L of n lines on a plane and their arrangement $A(L)$:
 - number of vertices in $A(L) = n(n - 1)/2$

- Proof:

 $$ (n-1)+(n-2)+(n-3)+...+2+1 = n(n-1)/2 $$

```
2+1+0=3
```
Complexity of Arrangements

• For a set L of n lines on a plane and their arrangement $A(L)$:
 – number of edges in $A(L) = n^2$
• Proof: (by induction)
 Strategy: Assume it’s correct for $(n-1)$ and show that it is still correct when one more line l is added

\[
(n-1)^2 + (n-1) + n = n^2
\]
Complexity of Arrangements

• For a set L of n lines on a plane and their arrangement $A(L)$:
 – number of faces in $A(L) = n^2/2 + n/2 + 1$

Proof

1. Add an extra vertex at infinity
2. Join all line open-ended edges to this vertex

By Euler’s formula

$V - E + F = 2$

$\Rightarrow F = 2 - (V + 1) + E$

$= 2 - (n(n-1)/2 + 1) + n^2$

$= n^2/2 + n/2 + 1$
Data Structure for Arrangement

• Doubly connect edge list (Again)

Similar to Voronoi/Delaunay diagram, we can add a bounding box
Build An Arrangement

• Incremental algorithm
 – Add one line at a time

Walk around each face, to find the next intersection (new vertex)
Time Complexity of Building An Arrangement

• Depends on the complexity of all faces intersected by each new line

This is called the “Zone” of line l
Time Complexity of Building An Arrangement

• Zone complexity
 – Total number of vertices/edges/faces in the zone

• Zone theorem
 – The complexity of a zone of a line in an arrangement of \(n \) lines on the plane is \(O(n) \)
 • In particular, \(z_n \leq 6n \)

\[\Rightarrow \text{We can build an arrangement in time:} \]
\[1 + 2 + \ldots + n = O(n^2) \]
Proof of Zone Theorem

\[z_n \leq 6n \]

- Given an arrangement of \(n \) lines
- Assume \(l \) is a horizontal line
- Prove by induction: take away one line
 - So we have \(z_n \leq 6n-6 \)
- Put it back the line we remove, show that \(z_n \leq 6n \)
Proof of Zone Theorem

$z_n \leq 6n$

- Instead of counting total complexity, we count # of “left edges” of each face
- We prove $l_n \leq 3n$

$l_n \leq 3n$

We prove that adding one line will add at most 3 left edges!
Proof of Zone Theorem

\[l_n \leq 3n \]

- Adding one line will add at most 3 left edges
 - One from the new line added
 - Two from the old left edge

- The line \(r \) we pick to remove/add is the line whose intersection with \(h \) is rightmost, \(L_5 \) in our case
Proof of Zone Theorem

\[l_n \leq 3n \]

- At most one new left edge is added
 - The line \(r \) only contribute one left edge
 - The line \(r \) that contribute multiple left edges, must have another line intersecting \(h \) on its right
 - Example, \(L_2 \) and \(L_3 \)

\[h \]

\[L_1 \]

\[L_2 \]

\[L_3 \]

\[L_4 \]

\[L_5 \]

\[A \]

\[B \]

\[C \]

\[D \]

\[E \]

\[F \]

\[Remove \ L_5 \]
Proof of Zone Theorem

\[l_n \leq 3n \]

- At most two old left edges are split
 - Adding a line \(r \) will divide each cell in the zone to at most two cells
 - Let intersection \(r \) and \(h \) be \(x \)
 - Cells left to \(x \), will be “clipped” (one sub cell will not be in the zone)
 - Cells contain or right to \(x \), will be “split” (both sub cells will be in the zone)
Proof of Zone Theorem

\[l_n \leq 3n \]

- At most two old left edges are split
 - Only the rightmost face will be split by \(r \)
 - Face must be convex so at most two edges will be split
 - The line \(r \) only “clips” other faces
 - Clipping does not increase the number of left edges

\[\text{Diagram showing the division of zones and faces.} \]
Summary

• Complexity of an arrangement of n lines in a plane $O(n^2)$

• Building an arrangement of n lines in a plane takes $O(n^2)$ time
 – Zone theorem
 • The zone of a line is a set of faces intersecting the line
 • Complexity of a zone is linear to the number of lines
Applications of Arrangements

• Ray tracing rendering
• Compute Voronoi diagram
 – K closest computation
• Visibility graph
• Hidden surface removal
• Ham (cheese) sandwich cut
• Motion planning
• …
Ray-Tracing Rendering

• Shooting rays from each pixel
 – Decide which object hits the rays
 – Determine the color of the pixel
Ray-Tracing Rendering

• One of the oldest problems in rendering
 - anti-aliasing

Supersampling

Resulting color

\[
\frac{\square + \square + \square + \square}{4} = \square
\]

From wikipedia
Supersampling

- Human vision is sensitive to regularity
Supersampling

• We need generate our samples at random (regularity is BAD)

• Finding an optimal distribution depends on the objects to be rendered

• Instead, we generate a multiple random samplings and pick the one that is the best

• How do we measure the quality of a sample?
Supersampling

- Assume: our scene is made of polygons
- Most likely, one pixel will be intersected by an edge of a polygon

![Bad samples](image1)

![Better samples](image2)
Discrepancy

• Let’s focus on the pixel
 – Pixel is a 1x1 square U
 – A half-plane h divide the square into 2 regions
 – $\mu(h) = \text{area of } (U \cap h)$
 – $\mu_S(h) = \frac{#(S \cap h)}{#(S)}$

\begin{align*}
\mu_S(h) &= 0.1 \\
\mu_S(h) &= 0.4
\end{align*}
Discrepancy

• Let’s focus on the pixel
 – Discrepancy of S, $\Delta_S(h) = |\mu_S(h) - \mu(h)|$

$\Delta_S(h) = 0.35$

Assume $\mu(h) = 0.45$

$\Delta_S(h) = 0.05$
Discrepancy

• We want the discrepancy to be as small as possible

• Given a set of samples, what is its worst discrepancy for any given half-plane?

$$\Delta_S(H) = \max_{h \in H} (|\mu_S(h) - \mu(h)|)$$

where H is a set of all possible half planes
Summary

- Given a set of samples, we can measure its quality by computing the worst discrepancy Δ_S

- We generate several sets of samples and pick the one with the best quality

 Note: A uniform distribution will have the lowest discrepancy, but a uniform distribution produces regularity.

Question: How to compute $\Delta_S(H) = \max_h (|\mu_S(h) - \mu(h)|)$

There are an infinite number of possible half-planes... We can’t just loop over all of them.
Computing Discrepancy

• The line of the half-plane of maximum discrepancy must pass through one of the sample points.

If h does not pass though any point, we can always increase the discrepancy by translating h until it touches at least one point, i.e., Same $\mu_S(h)$, but increasing/decreasing $\mu(h)$.

• We only have to consider that cases:
 1. When h passes through 1 point
 2. When h passes through 2 points
Computing Discrepancy

• When h passes through 1 point
 – There are infinite number of such h

 Maximum discrepancy only happen at certain cases!!
 We only need to find local extrema of $\mu(h_\theta)$
 • At local maximum of $\mu(h_\theta)$ and $\mu_S(h) < \mu(h_\theta)$
 • At local minimum of $\mu(h_\theta)$ and $\mu_S(h) > \mu(h_\theta)$

 There are only constant number of these, each will take us $O(n)$ time to compute $\Delta_S(h_\theta)$
 Total time complexity is $O(n^2)$
Computing Discrepancy

- When h passes through 2 points
 - There are $O(n^2)$ of such h

Q: Do we have to consider h passes through 3 or more points?

Each will take us $O(n)$ time to compute $\Delta_S(h)$

Total time complexity is $O(n^3)$

Need a faster algorithm for this!
Computing Discrepancy

Use arrangement!

Construct an arrangement A of the duals of the sample points and h

Count the number of lines above and below h^*
Duality

- We can map between different ways of interpreting 2D values

- Points \((x,y)\) can be mapped in a one-to-one manner to lines (slope, intercept) in a different space

\[
\begin{align*}
\vec{p}_4 &= (-2,4) \\
\vec{p}_3 &= (3,2) \\
\vec{p}_2 &= (1,0) \\
\vec{p}_1 &= (-4,-5)
\end{align*}
\]

\[
\begin{align*}
l &= y = x - 1 \\
\vec{l}^* &= \text{duality transform}
\end{align*}
\]

\[
\begin{align*}
\vec{p}_3^* &: y = 3x - 2 \\
\vec{p}_2^* &: y = x \\
\vec{p}_1^* &: y = -3x + 5 \\
\vec{p}_4^* &: y = -2x - 4
\end{align*}
\]
Duality Transforms

- Some duality transforms:
 - Slope: \(y = mx - b \Leftrightarrow p:(m, b) \)
 - Polar: \(ax + by = 1 \Leftrightarrow p:(a, b) \)
 - Parabolic: \(y = 2ax - b \Leftrightarrow p:(a, b) \)

Q: When you move a point from left to right in primary space what will happen in dual space.
Duality Properties

- \((x^*)^* = x\)
- Point \(p\) lies on line \(l\) iff point \(l^*\) lies on line \(p^*\)
- Lines \(L_1\) and \(L_2\) intersect at a point \(p\) iff line \(p^*\) passes thru \(L_1^*\) and \(L_2^*\)
- If point \(p\) lies above line \(L\), then line \(p^*\) lies below point \(L^*\) and vice-versa

\[p_4 = (-2,4)\]
\[l : y = x - 1\]
\[p_3 = (3,2)\]
\[p_2 = (1,0)\]
\[p_1 = (-4,-5)\]

\[\begin{align*}
 p_1^* &: y = -3x + 5 \\
 p_2^* &: y = x \\
 p_3^* &: y = 3x - 2 \\
 p_4^* &: y = -2x - 4
\end{align*}\]
Additional Duality Properties

• This duality transform takes
 – points to lines, lines to points

• For line segments, the dual of a line segment \(s \) between points \(p \) and \(q \) is the double wedge between lines \(p^* \) and \(q^* \) on the dual plane
Computing Discrepancy

Determine how many sample points lie below a given line

Determine how many lines lie above a given vertex
Why Duality?

• Looking at things on the dual plane provides new perspectives
 – It does makes problem harder or easier

• For problems dealing with points, their structure is more apparent
 – arrangement of lines
Computing Discrepancy

Determine how many lines lie above a given point

1. Compute arrangement of S^*
2. For each vertex we compute # of lines above the vertex
Computing Discrepancy

• For each line \(l \) in \(S^* \)
 – Compute the level of the leftmost vertex. \(O(n) \)
 • Check, for all other lines \(l_i \), whether \(l_i \) is above that vertex
 – Walk along \(l \) from left to right to visit the other vertices on \(l \), using the DCEL.
 • Walk along \(l \), maintaining the level as we go (by inspecting the edges incident to each vertex we encounter).
 – \(O(n) \) per line
Summary

• Given the level of a vertex in the (dualized) arrangement, we can compute the discrete measure of S \textit{wrt} the h that vertex corresponds to in $O(1)$ time.

• We can compute all the interesting discrete measures in $O(n^2)$ time.

• Thus we can compute all $\Delta_S(h)$ and hence Δ_S, in $O(n^2)$ time.
Ham (cheese) sandwich cut

- Given a sandwich, can you cut it so that each half has the same amount of ham, cheese and bread

Ham sandwich theorem
You can always do this

But how do you compute the cut?
Ham (cheese) sandwich cut

Find lines, such that the number of red/blue points above the line is the same as that below the lines

Find points, such that the number of red/blue lines above the points is the same as that below the points
Ham (cheese) sandwich cut

- Consider blue/red (dual) points separately
Ham (cheese) sandwich cut

- Consider blue/red (dual) points separately

Red+Blue

This is our cut!
Constructing Vornoi Diagrams

1. Lift each 1D point a to a 2D point (a, a^2)

 • For each 2D point (a, a^2), find its dual $y = 2ax - a^2$

1. Compute intersection of these lines in the dual space

2. Project the intersections of these duals onto the x-axis.

3. This is the Vornoi diagram.

 The process generalizes to
 • Higher order diagrams (by checking vertex levels!)
 • Higher dimensional space