CS483 Lecture 01

Jyh-Ming Lien

Course Topics

- Jan 22 Introduction
- Jan 29 Algorithms with numbers
- Feb 05 Divide-n-conquer algorithms
- Feb 12 Graphs
- Feb 19 Paths in graphs
- Feb 26 Greedy algorithms
- Mar 26 Dynamic programming
- Apr 09 Linear programming
- Apr 23 NP-completeness
- See details and updates on the course webpage

Course Info

- course webpage:
- from the syllabus on http://cs.gmu.edu/
- http://cs.gmu.edu/~imlien/teaching/09_spring_cs483/
- Information you will find
- course syllabus
- time table
- problem sets
- pdf copies of the lectures
- office hours
- (mine) monday 6-7pm, (TA) Tue. 4-6pm

Prerequisite

- Data structures and algorithms (CS 310)
- Formal methods and models (CS 330)
- Calculus (MATH 113, 114, 213)
- Discrete math (MATH 125)

Textbook

- Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani, McGraw-Hill, 2006
- I also recommend you read the following book: Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,The McGraw-Hill Companies, 2nd Edition (200I)

Grades

- Quizzes (every week) 30\%
- Midterm Exam (March I8) 35\%
- Final Exam (May 6) 35\%
- Make-up tests will NOT be given for missed examinations

Other Important Info

- Email
- make sure your gmu mail is activated
- send only from your gmu account; mails might be filtered if you send from other accounts
- when you send emails, put [483] in your subject header
- Discussion Board
- it's a google group, add yourself

OK, lets start

Rabbits

- you are given a newly-born pair of rabbits, one male, one female
- Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits
- rabbits never die
- the female always produces one new pair

Rabbits

- How many pairs will there be in one year?
- End of month I
- End of month 2
- End of month 3
- End of month 4
- End of month 12

Fibonacci Number

$$
f i b(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ \text { fib(n-1)+fib(n-2)} & \text { if } n>1\end{cases}
$$

- Question: what is $f i b(200)$, what about fib(200000000000000)?

Our First Algorithm procedure $\operatorname{FIB}(n)$ if $n=0$
 then return (0)
 if $n=1$
 then return (1)
 return $(\operatorname{FIB}(n-1)+\operatorname{FIB}(n-2))$

- Questions we should ask
- Is the algorithm correct?
- What is the running time of our algorithm?
- Can we do better

Analyze Algorithm

- Is it correct?
- How fast does it run?
- we let the run time of fib(n) be $T(n)$
- $T(n)=$
- $\mathrm{T}(200)=$
- assume you have a Intel Pentium 4 CPU (3GHz)
- It takes

Analyze Algorithm

- Can Moose's law, which predicts that CPU get I. 6 times faster each year,solve our problem?

Analyze Algorithm

- Can we do better?

Analyze Algorithm

- When we design an algorithm, we should ask ourselves
- Is the algorithm correct?
- How efficient is the algorithm?
- Time efficiency
- Space efficiency
- Can we do better?
- How do we measure the efficiency?
- empirical analysis
- theoretical analysis

Summary

- General ideas of design of algorithms
- Analysis of algorithms: experimental and theoretical
- Asymptotic notations: O (upper bound), (lower bound), (tight bound)

Warning

- Make sure you have the mathematics or CS prerequisites
- You must make arrangements to come to GMU to take the exams on-site
- You need to spend a minimum of 9~12 hours a week outside of class reading the material and doing practice problem sets

Suggestions

- Don't fall behind - maintain a steady effort
- Take the homework (quizzes, practice problems) seriously - these are the only ways to exercise for the exams
- Make use of office hours - we are here to help, but it will be more helpful if you can think about the questions in advance
- Read the materials before the class and ask during the class- this prepares you for the quizzes
- Form study groups - things become easier if there is joint force

Course Outcome

- An understanding of classical problems in Computer Science
- An understanding of classical algorithm design and analysis strategies
- An ability to analyze the computability of a problem
- Be able to design and analyze new algorithms to solve a computational problem

Practice Problem Set

- Go to course webpage

