CS483 Analysis of Algorithms Lecture 02 - Algorithms with numbers *

Jyh-Ming Lien

January 29, 2009

[^0]
What will we learn today?

What will we learn
\triangle today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
$\square \quad$ Basic and modulo arithmetic
\square Greatest common divisor (GCD)
$\square \quad$ Check if a number is prime (an easier problem)
\square Prime number factorization (a very hard problem)
\square Generate random prime number with arbitrary length
\square Cryptography:

- Private/Public-key cryptography (symmetric/asymmetric cryptography).
- RSA cryptosystem
- Based on the fact that primality check can be done much more efficiently than factoring.

Cryptography

Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion

Typical setting in cryptography

What will we learn today?

Typical setting in
\checkmark cryptography
Private-key cryptography
Public-key cryptography (PKC)
Public-key cryptography
RSA
RSA
RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes Conclusion

The typical setting

- Alice and Bob wish to communicate in private
- Eve will try to find out what they are saying
- When Alice wants to send a message x, she encode it as $e(x)$
- Bob then applies his decryption function $d(\cdot)$ to get his message $d(e(x))=x$
- Hopefully, Eve does not know how to convert $e(x)$ back to e, i.e., $d(\cdot)$

Private-key cryptography

What will we learn today?

Cryptography

Typical setting in
cryptography
Private-key
D cryptography
Public-key cryptography (PKC)
Public-key cryptography
RSA
RSA
RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
\square Alice and Bob choose a secret codebook (key) together
\square Example: One time pad using bitwise xor

- Encode $e_{r}(x)=x \oplus r$
- Decode $e_{r}\left(e_{r}(x)\right)=$
\square Example:
- $\quad x=11110000$
- $\quad r=01110010$
- Encoded message
- Decoded message
\square Drawbacks of One time pad:
\square A more secure/popular private-key cryptography: Advanced Encryption Standard (AES) (by Rijmen and Daeme 1998)

Public-key cryptography (PKC)

What will we learn today?
\square For thousands of years, it was believed that the only way to establish secure communications was to first exchange a secret codebook (private key).
$\square \quad \mathrm{PKC}$ is a ground breaking idea in cryptography (by Merkle, Diffie and Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Cryptography (PKC) Inventors (c) Chuck Painter/Stanford News Service.)

Public-key cryptography

What will we learn today?
Cryptography
Typical setting in
cryptography
Private-key cryptography
Public-key cryptography (PKC)

Public-key
\triangle cryptography
RSA
RSA
RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
\square Example:

Analysis of Algorithms
CS483 Lecture 02-Algorithms with numbers - 7

What will we learn today?

Cryptography

Typical setting in
cryptography
Private-key cryptography
Public-key cryptography (PKC)
Public-key cryptography \triangleright RSA
RSA
RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
$\square \quad$ RSA is a type of PKC (by Rivest, Shamir, Adleman 1978)

Ronald Rivest
Adi Shamir Len Adleman (Images from http://www.livinginternet.com/)
\square A brief history of RSA:

- RSA is inspired by Diffie and Hellman's paper on PKC
- First publicized by Martin Gardner on Scientific American in 1977
- NSA attempts to prevent RSA being distributed
- RSA published on CACM in 1978
- RSA was written up by Adam Back in 5 line PERL program
-export-a-crypto-system-sig -RSA-3-1ines-PERL
\#!/bin/perl $-s p 0777 \mathrm{i}<\mathrm{X}+\mathrm{d} * 1 \mathrm{ML} \mathrm{a}^{\wedge}$ *1N801dsXx++1M1N/dsM0<j]dsj
\$/-unpack ('H*', \$_); \$_-'echo 16dio\U\$k"SK\$/SM\$n\EsN0p[1N*1

(3-line version, from http://www.cypherspace.org/adam/rsa/)

RSA

What will we learn today?

Cryptography

Typical setting in
cryptography
Private-key cryptography
Public-key cryptography (PKC)
Public-key cryptography
RSA
\triangle RSA
RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
$\square \quad$ As usual, the US Government prohibited exporting the code outside of the country
\square People started to protest and put the PERL code:

- in their e-mail signatures,
- on t-shirts, and
- on their skins...

(Images from http://www.cypherspace.org/adam/rsa/)
$\square \quad$ In Sep 2000, the US patent for RSA expired

What will we learn today?

Cryptography

Typical setting in
cryptography
Private-key cryptography
Public-key cryptography (PKC)
Public-key cryptography
RSA
RSA
\triangleright RSA
RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes Conclusion
$\square \quad$ Making RSA keys

- Bob's public key:
- Bob's private key:
$\square \quad$ Communicate using RSA keys
- Alice encodes a message $x: e(x)=x^{e} \% N$
- Bob decodes a message: $d(e(x))=(e(x))^{d} \% N$
- If Eve wants to decode a encrypted message, she will need to
\triangleright
\triangleright
\square The security of RSA is based the following simple fact

What will we learn today?

Cryptography

Typical setting in
cryptography
Private-key cryptography
Public-key cryptography (PKC)
Public-key cryptography
RSA
RSA
RSA
\triangle RSA
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes Conclusion
$\square \quad$ RSA is based heavily on number theory

- modulo arithmetic
- prime number generation
$\square \quad$ What do we need to in RSA?
- An algorithm to generate prime numbers with arbitrary length
- An algorithm to compute $x^{y} \% N$ for arbitrary large x and y
- An algorithm to compute the inverse of a modulo, i.e., $(x \% N)^{-1}$

What will we learn today?
Cryptography
Basic Arithmetic
Integer addition
Integer multiplication
Integer multiplication
Integer multiplication
Integer division
Modular Arithmetic
Greatest Common Divisor \& Modular division

Basic Arithmetic

Integer addition

What will we learn today? Cryptography

Basic Arithmetic
∇ Integer addition
Integer multiplication
Integer multiplication Integer multiplication Integer division

Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
\square Example:

\square Important observation: The sum of any three single-bit (digit) numbers is at most two bits (digits) long.
\square Complexity:
$\square \quad$ Can we do better?

Integer multiplication

What will we learn today? Cryptography

Basic Arithmetic
Integer addition
\triangleright Integer multiplication
Integer multiplication Integer multiplication Integer division

Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
$\square \quad$ What is the time complexity of multiplying two integers using the algorithms we learned in elementary schools?
Example: how do you compute this: 1101×1011 ?

			\times	1	0	1	1	
				1	1	0	1	(1101 times 1)
			1	1	0	1		(1101 times 1, shifted once)
		0	0	0	0			(1101 times 0, shifted twice)
+	1	1	0	1				(1101 times 1, shifted thrice)
1	0	0	0	1	1	1	1	(binary 143)

\square Complexity:
\square Is there a better way of multiplying two integers than this elementary-school method?

Integer multiplication

What will we learn today?
Cryptography
Basic Arithmetic
Integer addition
Integer multiplication
\triangleright Integer multiplication Integer multiplication Integer division

Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes Conclusion
\square Russian peasant method (This is the method in Al Khwarizmi's book)
$\square \quad$ Computing $x y$

- If y is even, $x \cdot y=2\left(x \cdot \frac{y}{2}\right)$
- If y is odd, $x \cdot y=x+2\left(x \cdot \frac{y-1}{2}\right)$
\square Example: $123 \times 77=$

Integer multiplication

What will we learn today?
Cryptography
Basic Arithmetic
Integer addition
Integer multiplication
Integer multiplication
D Integer multiplication
Integer division
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
$\square \quad$ Algorithm
Algorithm 0.1: $\operatorname{Multiply}(x, y)$Time complexity:Advantage: very fast and easy hardware implementation!
$\square \quad$ Can we do better?

Integer division

What will we learn today?
Cryptography
Basic Arithmetic
Integer addition
Integer multiplication
Integer multiplication
Integer multiplication
\triangleright Integer division
\square Example: 123/17=
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes Conclusion
$\square \quad$ Computing $(q, r)=x / y$

- If x is even,
- If x is odd,
- If $x<y,(q, r)=(0, x)$
\square Time complexity?

What will we learn today?
Cryptography
Basic Arithmetic
D Modular Arithmetic
Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication
Modulo Exponentiation
Modulo Exponentiation
Greatest Common Divisor \& Modular division
Generate random primes
Conclusion

Modular Arithmetic

Definitions

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
\triangleright Definitions
Modulo
Addition/Multiplication Modulo
Addition/Multiplication
Modulo Exponentiation
Modulo Exponentiation
Greatest Common Divisor \& Modular division

Generate random primes

Conclusion

Figure 1.3 Addition modulo 8.

$\square \quad N$ divides x if $x \bmod N=0$
$\square \quad x \bmod N=x \% N=x-k N$
$\square \quad$ If $x \% N=r$, then $(x-r) \% N=0$
\square It is usually convenient to write:

$$
(x \equiv y \quad \bmod N) \text { iff }(x \quad \bmod N)=(y \quad \bmod N)
$$

\square Example:

- $31 \equiv 13 \bmod 3$
- $14 \equiv 59 \bmod 5$

Modulo Addition/Multiplication

What will we learn today? Cryptography

Basic Arithmetic
Modular Arithmetic
Definitions
Modulo
\triangleright Addition/Multiplication Modulo
Addition/Multiplication Modulo Exponentiation Modulo Exponentiation

Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
$\square \quad$ If $x \equiv x^{\prime} \bmod N$ and $y \equiv y^{\prime} \bmod N$, then:

$$
x+y \equiv x^{\prime}+y^{\prime} \quad \bmod N
$$

$$
\begin{gathered}
\text { and } \\
x y \equiv x^{\prime} y^{\prime} \quad \bmod N
\end{gathered}
$$

\square More properties:
$-\quad x+(y+z) \equiv(x+y)+z \bmod N($ associativity $)$

- $x y \equiv y x \bmod N$ (commutativity)
$-x(y+z) \equiv x y+x z \bmod N($ distributivity $)$

Modulo Addition/Multiplication

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Definitions
Modulo
Addition/Multiplication
Modulo
A Addition/Multiplication
Modulo Exponentiation
Modulo Exponentiation
Greatest Common Divisor \& Modular division

Generate random primes Conclusion
$\square \quad$ Addition: $(x \% N)+(y \% N)=(x+y) \% N$

- Complexity:
$\square \quad$ Multiplication $(x \% N)(y \% N)=(x y \% N)$
- Complexity:

Modulo Exponentiation

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication
\triangle Modulo Exponentiation
Modulo Exponentiation
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
\square Exponentiation: $x^{y} \% N$

- Brute force: Compute x^{y} then compute $x^{y} \% N$
- Problem:
- Incremental: $x \% N \rightarrow x^{2} \% N \rightarrow x^{3} \% N \rightarrow \cdots \rightarrow x^{y} \% N$
- Problem:

Modulo Exponentiation

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Definitions
Modulo
Addition/Multiplication Modulo
Addition/Multiplication
Modulo Exponentiation
\triangleright Modulo Exponentiation
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
\square Decrease-n-conquer

- If y is even,
- If y is odd,

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common
Divisor \& Modular
\triangleright division
Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization Solution 3 - Euclidean Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean
Algorithm
Modulo division
Generate random primes

Greatest Common Divisor \& Modular division

Definition

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
\triangle Definition
Solution 1 - Brute force Solution 2 - Prime factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes
Conclusion
\square Greatest Common Divisor Problem: Given two non-negative integers m and n, find the largest integer, denoted as $\operatorname{gcd}(m, n)$, that can evenly divide both m and n.
\square Example: If $m=98$ and $n=42$, then $\operatorname{gcd}(m, n)=$ \square How do we design an algorithm to solve this problem?

Solution 1 - Brute force

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
\triangle Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean
Algorithm
Modulo division
Generate random primesCan we do better?

Solution 2 - Prime factorization

What will we learn today? Cryptography

Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force
Solution 2 - Prime
Δ factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes
Conclusion
\square Observation: use the strategy that we learned in the middle schools, i.e., "Prime factorization".
$\square \quad$ Example: $m=98=2 \times 7 \times 7$ and $n=42=2 \times 3 \times 7$
$\Rightarrow \operatorname{gcd}(m, n)=2 \times 7=14$
$\square \quad$ Algorithm: $\operatorname{gcd}(m, n)$
Algorithm 0.4: $\operatorname{gcd}(m, n)$
Perform prime factorization for m
Perform prime factorization for n
Find and multiply the common prime factors from m and n
\square Well, the "algorithm" above is not really an algorithm yet, because we do not specify:

1. how to perform prime factorization on an integer?
2. how to find the common numbers from two lists of integers?

Solution 2 - Prime factorization

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force Solution 2 - Prime
factorization
Solution 2 - Prime
\triangleright factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes Conclusion
\square Problem: Given an integer n, find a sequence of prime numbers S, whose multiplication is n.
$\square \quad$ Find a list of prime numbers P that are smaller than n

```
Algorithm 0.5: PRIME FACTORIZATION( \(n\) )
```

$i \leftarrow 2$
while $i<n$
do $\left\{\begin{array}{l}\text { if } n \% i=0 \\ \text { then }\left\{\begin{array}{l}S \leftarrow i \\ n \leftarrow \frac{n}{i}\end{array}\right.\end{array}\right.$ else $i \leftarrow$ next prime number

Solution 2 - Prime factorization

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
Δ factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean
Algorithm
Modulo division
Generate random primes Conclusion
$\square \quad$ Problem: Given two lists of numbers, P_{m} and P_{n}, find a list of the common numbers P_{c} from P_{m} and P_{n}.
\square Example: $P_{m}=\{2,7,7\}, P_{n}=\{2,3,7\} \Rightarrow P_{c}=\{2,7\}$
\square Algorithm
Algorithm 0.6: Common Elements $\left(P_{m}, P_{n}\right)$
comment: initially we create an empty list P_{c}
for each $i \in P_{m}$
do $\left\{\begin{array}{l}\text { if } i \in P_{n} \\ \text { then }\left\{\begin{array}{l}P_{c} \leftarrow i \\ \text { remove } i \text { from } P_{n}\end{array}\right.\end{array}\right.$

Solution 3 - Euclidean Algorithm

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force Solution 2 - Prime factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
\triangleright Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes
Conclusion
$\square \quad$ Observation 1: $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \% n)$
\square Observation 2: $\operatorname{gcd}(m, 0)=m$
Proof.

(image of Euclid)
$\square \quad$ Example: $\operatorname{gcd}(98,42)=$
\square Algorithm
Algorithm 0.7: $\operatorname{gcd}(m, n)$

Solution 3 - Euclidean Algorithm

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
\triangleright Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes
Conclusion
$\square \quad$ Time complexity of Algorithm 0.7?

- Hint: If $a \geq b$, then $a \% b<a / 2$

An extension of Euclid's algorithm

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force Solution 2 - Prime factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean Algorithm

An extension of
\checkmark Euclid's algorithm
Solution 3 - Euclidean Algorithm
Modulo division
Generate random primes
Conclusion
$\square \quad$ GCD is key to dividing in the modular world
$\square \quad$ Lemma: If d divides both a and b and $d=a x+b y$ for some integers x and y, then $d=\operatorname{gcd}(a, b)$.

- proof:
$\square \quad$ Example: $\operatorname{gcd}(13,4)=1,13 \cdot 1+4 \cdot(-3)=1$
Algorithm 0.8: EXT- $\operatorname{gcd}(a, b)$

Solution 3 - Euclidean Algorithm

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division
Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm

Solution 3 - Euclidean
Algorithm
Modulo division
Generate random primes
Conclusion
\square Is Algorithm 0.8 correct?
$\square \quad$ Time complexity of Algorithm 0.8 ?

Modulo division

What will we learn today? Cryptography

Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Definition

Solution 1 - Brute force Solution 2 - Prime factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean Algorithm
Solution 3 - Euclidean Algorithm
An extension of Euclid's algorithm
Solution 3 - Euclidean Algorithm
\triangleright Modulo division
Generate random primes
Conclusion
$\square \quad$ In real number arithmetic, $b / a=b \cdot 1 / a=b \cdot a^{-1}$
\square For modulo division, $(b \% N) /(a \% N)=(b \% N)\left(a^{-1} \% N\right)$

- We need to define a^{-1}
- $\quad x=a^{-1}$ if $a x \equiv 1 \bmod N$
$-a x \equiv 1 \bmod N \Rightarrow a x+N y=1 \Rightarrow \operatorname{gcd}(a, N)=1$
$\square \quad$ Modular division theorem. For any $a \bmod N, a$ is invertible if a and N are relatively prime. If a is invertible, a^{-1} can be found in time $O\left(n^{3}\right)(n=\log N)$ using the extended Euclid algorithm.
\triangle primes
Primality testing
Primality testing
Primality testing
Primality testing
Generate a random prime

Conclusion

Generate random primes

Primality testing

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
\triangleright Primality testing
Primality testing
Primality testing
Primality testing
Generate a random prime
\square Given a number p how do we know if p is a prime?
$\square \quad$ We wish to answer this without trying to factor p.
\square We do this based on Fermat's little theorem (AD 1640)

- If p is a prime, then for every $1 \leq a<p$,

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

- proof.

Primality testing

What will we learn today? Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor \& Modular division

Generate random primes
Primality testing
\triangle Primality testing
Primality testing
Primality testing
\square Our 1st attempt

\square Problem: Note that the theorem is "If p is prime, then" But our test above is taking another direction "If $a^{N-1} \equiv 1 \bmod N$, then N is prime.
\square Consequence: Some non-prime (composite) number may have some such a which satisfies the "If" statement above.

- In fact, there are a set of (very rare) numbers that have all such $1 \leq a<p$ which satisfies the "If" statement above. These numbers are called "Carmichael numbers." (We will ignore these numbers for now)

Primality testing

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Primality testing
Primality testing
D Primality testing
Primality testing
Generate a random prime

Lemma: If $a^{N-1} \not \equiv 1 \bmod N$ for some a which is relatively prime to N, then there must have at least $\frac{N}{2}$ of such $a<N$.

- proof:
\square This basically means:
- If N is prime, $a^{N-1} \equiv 1 \bmod N$ for all $a<N$
- If N is not prime, $a^{N-1} \equiv 1 \bmod N$ for $<\frac{N}{2}$ number of $a<N$

Primality testing

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Primality testing
Primality testing
Primality testing
D Primality testing
Generate a random prime
\square Our strategy: Run our 1st algorithm k times

- $\operatorname{Pr}(1$ st algorithm returns 'yes' and N is prime)=1
- $\operatorname{Pr}\left(1\right.$ st algorithm returns 'yes' and N is not prime) $\leq \frac{1}{2}$
- $\operatorname{Pr}($ All k instances of 1 st algorithm return 'yes' and N is not prime) $\leq \frac{1}{2^{k}}$
- The error decreases 'exponentially'
\square Our 2nd attempt

Algorithm 0.9: PRIMIALITY2(N)

Generate a random prime

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Primality testing
Primality testing
Primality testing
Primality testing
Generate a random
\triangle prime
Conclusion
\square Observation: There are many prime numbers.

- Lagrange's prime number theorem. Let $\pi(x)$ be the number of primes $\leq x$, then $\pi(x) \approx \frac{x}{\ln x}$.
- Given a n-bit long number N, there are about $\frac{N}{n}$ prime numbers
\square Now we describe a brute force method to generate a random prime number:

Algorithm 0.10: RANDOMPRIME(n)

$\square \quad$ What is the time complexity of RANDOMPRIME?

Cryptography

Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes

\triangleright Conclusion
Back to RSA
Summary

Conclusion

Back to RSA

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
\triangle Back to RSA
Summary
$\square \quad$ Making RSA keys

- Two prime numbers p and q and $N=p q$.
- $\quad e$ be any relative prime to $(p-1)(q-1)$
$-\quad d=(e \%(p-1)(q-1))^{-1}$
$\square \quad$ Communicate using RSA keys
- Alice encodes a message $x: e(x)=x^{e} \% N$
- Bob decodes a message: $d(e(x))=(e(x))^{d} \% N$
$\square \quad$ Why does it work? We will show that $\left(x^{e} \% N\right)^{d}=x \% N$
- proof:

Summary

What will we learn today?
Cryptography
Basic Arithmetic
Modular Arithmetic
Greatest Common Divisor \& Modular division

Generate random primes
Conclusion
Back to RSA
\triangleright Summary
$\square \quad$ We talked about

- Basic/Modulo arithmetic
- GCD
- Primality and prime number generation
- Private/Public key cyrptography
- RSA
$\square \quad$ We've walked through Chapter 1.1-1.4. (Please read 1.5, hashing)

[^0]: *this lecture note is based on Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and Introduction to the Design and Analysis of Algorithms by Anany Levitin.

