CS483 Analysis of Algorithms
Lecture 02 — Algorithms with numbers *

Jyh-Ming Lien

January 29, 2009

*this lecture note is based @sgorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani &mtco-
duction to the Design and Analysis of Algorithms by Anany Levitin.

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 1

What will we learn today?

What will we learn
> today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

I I I R R A

Generate random primes

Conclusion

Basic and modulo arithmetic

Greatest common divisor (GCD)

Check if a number is prime (an easier problem)
Prime number factorization (a very hard problem)
Generate random prime number with arbitrary length

Cryptography:

— Private/Public-key cryptography (symmetric/asymmetric
cryptography).

— RSA cryptosystem

— Based on the fact that primality check can be done much more

efficiently than factoring.

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 2

What will we learn today?

> Cryptography

Typical setting in
cryptography
Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography
RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Cryptography

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 3

Typical setting in cryptography

What will we learn today?

Cryptography

Typical setting in
> cryptography
Private-key cryptography
Public-key cryptography
(PKC)
Public-key cryptography
RSA
RSA
RSA
RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Alice

xr

O The typical setting

Encoder

Bob

Decoder

- Eve

Alice and Bob wish to communicate in private
Eve will try to find out what they are saying
When Alice wants to send a messageshe encode it agx)

Bob then applies his decryption functid(y) to get his message

d(e(z)) = =
— Hopefully, Eve does not know how to conveftr) back toe, i.e.,
d(-)
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 4

Private-key cryptography

What will we learn today?

Cryptography

Typical setting in

cryptography
Private-key

> cryptography

Public-key cryptography

(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Alice and Bob choose a secret codebook (key) together
Example: One time pad usingitwise xor

Encodec,.(x) =x @ r
Decodee,.(e,.(x))

Example:

Drawbacks of One time pad:

x = 11110000
r = 01110010

Encoded message
Decoded message

Conclusion _
A more secure/popular private-key cryptography: Advanced
Encryption Standard (AES) (by Rijmen and Daeme 1998)
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 5

Public-key cryptography (PKC)

whatwilweleamtoday?] For thousands of years, it was believed that the only way to establish

Cryptography

Typical setting in
cryptography
Private-key cryptography

secure communications was to first exchange a secret codebook
(private key).

Public-key O PKC is a ground breaking idea in cryptography (by Merkle, Diffie and

> cryptography (PKC)
Public-key cryptography
RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Goyography (PKC)
Inventors (c) Chuck Painter/Stanford News Service.)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 6

Public-key cryptography

What will we learn today?] Exam p I e

Cryptography
Typical settri]ng in Bob
cryptography .
Private-key cryptography AI I ce Hello E t ‘/@—_Ln_rl
Public-key cryptography ; —= ENCrYp
z Alice!
(PKF?l)Jblic—key 52ED879E Key generation + Alice's
> cryptography 70F71D92 | function public key
RSA : 6EB69570
RSA Big random 08E03CE4
RSA number
RSA
Basic Arithmetic Alice
Modular Arithmetic Hell v ‘/h
ello
Greatest Common Divisor et o . . i «¢— Decrypt
& Modular division Alice's Alice's Alice! Alice's
public key private key private key

Generate random primes

Conclusion

(Images from Wikipedia)

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 7

RSA

What will we learn today?

Cryptography

Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography
> RsA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

O RSA s atype of PKC (by Rivest, Shamir, Adleman 1978)

[l

1] o —

Ronald Rivest Adi Shamir Len Adleman

(Images fromhttp: //mww.livinginter net.cony)

A brief history of RSA:

RSA is inspired by Diffie and Hellman’s paper on PKC

First publicized by Martin Gardner on Scientific Americarl@77
NSA attempts to prevent RSA being distributed

RSA published on CACM in 1978

RSA was written up by Adam Back in 5 line PERL program

-gxport-a-crypto-system-sig -RSA-3-lines-PERL

#1/bin/perl -sp0777i<X+d*1MLa"*1N%0]dsXx++1M1N/dsM0<]]ds]j
$/=unpack{'H*',5):% ="echo 16dio\USk"SKS/SMSn\EsNOp[1N*1

1K[d2%5a2/d0$"Ixp" |dc” ;8/\W//g;5_=pack('H*',/{(..)*)5/)

(3-line version, from http://www.cypherspace.org/adamjrsa/

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 8

RSA

Wwhatwilweleamtoday? =] As usual, the US Government prohibited exporting the code outside c

crvptography the country

Typical setting in

A 00 People started to protest and put the PERL code:
rivate-key cryptography

Public-key cryptography

(PKC) — In their e-mail signatures,

Public-key cryptography .

oA — on t-shirts, and

> RsA — on their skins...

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

(Images from http://www.cypherspace.org/adam/rsa/)

O In Sep 2000, the US patent for RSA expired

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 9

RSA

What will we learn today? 1 M ak| N g R SA keyS

Cryptography

Typical setting in
cryptography
Private-key cryptography —
Public-key cryptography

(PKC) —
Public-key cryptography

RSA — Bob’s public key:
- — Bob’s private key:
RSA

00 Communicate using RSA keys

Basic Arithmetic

Modular Arithmetic — Alice encodes a messagee(x) = x°%N
Greatest Common Divisor — Bob decodes a messag#e(z)) = (e(x))%N
Generate random primes — If Eve wants to decode a encrypted message, she will need to
Conclusion
>
>

0 The security of RSA is based the following simple fact

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 10

RSA

What will we leamn today? O RSA s based heavily on number theory

Cryptography _ . .
Typical sefting in — modulo arithmetic
yptography . .
Private-key cryptography — prime number generation
Public-key cryptography
(PKC) .
Public-key cryptography O What do we need to in RSA?
RSA = - = =
RSA — An algorithm to generate prime numbers with arbitrary length
> e — An algorithm to compute¥ %N for arbitrary larger andy
Basic Arithmetic — An algorithm to compute the inverse of a modulo, il@%N) !

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 11

What will we learn today?

Cryptography

> Basic Arithmetic

Integer addition
Integer multiplication
Integer multiplication
Integer multiplication
Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Basic Arithmetic

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 12

Integer addition

What will we learn today?] Exam p I e:
Cryptography

Basic Arithmetic C arry : 1

> Integer addition

Integer multiplication 1 1
Integer multiplication

Integer multiplication 1 O
Integer division

Modular Arithmetic 1 O 1

1 (53)
1 (35)
0 (88)

—_— OO
OIS
Q= O =

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

O Important observation: The sum of any three single-bit (digit)
numbers is at most two bits (digits) long.
O Complexity:

O Can we do better?

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 13

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition
> Integer multiplication

[0 Whatis the time complexity of multiplying two integers usitig algorithms

we learned in elementary schools?

Example: how do you compute this101 x 10117

Integer multiplication 1 1 O 1
Integer multiplication X 1 1
Integer division
Modular Arithmetic — 1 1 O 1 (1101 timeS 1)
Greatest Common Divisor 1 1 0 1 (1101 times 1, shifted once)
T — 0 0 O (1101 times O, shifted twice)
Condluc 0 1 (1101 times 1, shifted thrice)
onclusion
0 1 1 1 1 (binary 143)
0 Complexity:
0 Isthere a better way of multiplying two integers than theneéntary-school
method?
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 14

Integer multiplication

What will we learn today? D

Cryptography |:|

Basic Arithmetic

Integer addition

Integer multiplication

> Integer multiplication

Integer multiplication

Integer division D

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Russian peasant method (This is the method in Al Khwarizmi’s book)

Computingzy

- Ifyiseveng -y =2(x- 9)
- Ifyisodd,z -y =x+ 2(x -

Example:123 x 77=

y—1
2

)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 15

Integer multiplication

What will we learn today? [] Algonthm

Cryptography Algonthm 01 M ULTIPLY (xy y)

Basic Arithmetic

Integer addition

Integer multiplication
Integer multiplication

> Integer multiplication
Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion L___

O Time complexity:

O Advantage:
very fast and easy hardware implementation!
O Can we do better?

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 16

Integer division

What will we learn today?] COmpUtlng(Q7 ’I”) = CC/y

Cryptography

Basic Arithmetic — If X |S even,

Integer addition .

Integer multiplication _ If 1S Odd,

Integer multiplication — |If T <, r) = (0. ¢
Integer multiplication y <q’) (!)
> Integer division] Examp|6123/17:

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

0 Time complexity?

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 17

What will we learn today?

Cryptography

Basic Arithmetic

> Modular Arithmetic

Definitions
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation
Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Modular Arithmetic

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 18

Definitions

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

> Definitions
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation
Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

O Oodd

Figure 1.3 Addition modulo 8.

=t

N dividesz if £ mod N =0

x mod N =a2%N =x — kN

If t%N =r,then(z — r)%N =0
It is usually convenient to write:

(r=y mod N)iff (x mod N)=(y mod N).

Example:
— 31 =13 mod 3
— 14 =59 mod 5

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 19

Modulo Addition/Multiplication

What will we learn today? D

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
> Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation
Modulo Exponentiation

Greatest Common Divisor |:|
& Modular division

Generate random primes

Conclusion

If xt =2’ mod N andy =y mod N, then:
r+y=x2"+vy modN
and
ry =2y mod N

More properties:

- 2+ (y+2)=(x+y)+ 2z mod N (associativity)
— xy =yxr mod N (commutativity)
- x(y+2) =xy+ 2z mod N (distributivity)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 20

Modulo Addition/Multiplication

What will we learn today? H Addltlon (SE%N) + (y%N) p— (Qj‘ =+ y)%N

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

Modulo

Addition/Multiplication
Modulo

D> Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Complexity:

Senersierandomprimes.) Myltiplication (z%N)(y%N) = (zy%N)

Conclusion

Complexity:

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 21

Modulo Exponentiation

What will we learn today? |:| EXponentiationwy %N

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

> Modulo Exponentiation
Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Brute force: Compute? then compute:y %N

>

Problem:

Incrementalx %N — 22%N — 23%N — - — V%N

>

Problem:

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 22

Modulo Exponentiation

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation
> Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

O Decrease-n-conquer

— If yis even,

— If yis odd,

Algorithm 0.2: MODEXP(x,y, N)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 23

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common
Divisor & Modular
> division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 3 - Euclidean
Algorithm

Solution 3 - Euclidean
Algorithm

An extension of Euclid’s
algorithm

Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Greatest Common Divisor & Modular division

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 24

Definition

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

> Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 3 - Euclidean
Algorithm

Solution 3 - Euclidean
Algorithm

An extension of Euclid’s
algorithm

Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Greatest Common Divisor Problem Given two non-negative
integersm andn, find the largest integer, denotedgasl(m, n), that
can evenly divide botlw andn.

Example: Ifm = 98 andn = 42, thenged(m,n) =

How do we design an algorithm to solve this problem?

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 25

Solution 1 - Brute force

Whatwiiweleamiody? 1 Observation: the range ofcd(m,n) is in [1, min(m, n)]

Cryptography Algorithm 0.3: ged(m, n)

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor for 7’ — {min(m7 n)’ T 1}

& Modular division I s y
8. Mol 4o if m%i =0 and n%i =0
> Solution 1 - Brute force then return (Z)

factorization .

Solution 2 - Prime

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean .
Algorithm O How long does the algorithm take?
Solution 3 - Euclidean

Algorithm

An extension of Euclid’s

algorithm

Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes [] Can we do better’)

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 26

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime

> factorization

Solution 2 - Prime

factorization

Solution 2 - Prime

factorization

Solution 3 - Euclidean

Algorithm

Solution 3 - Euclidean

Algorithm

An extension of Euclid’s

algorithm

Solution 3 - Euclidean

Algorithm

Modulo division

Generate random primes

Observation: use the strategy that we learned in the middle schools,
l.e., “Prime factorization”.

Example m =98 =2 x7x7andn =42 =2x3 x 7

= ged(m,n) =2 x7=14

Algorithm : ged(m, n)

Algorithm 0.4: gcd(m, n)

Perform prime factorization for m
Perform prime factorization for n
Find and multiply the common prime factors from m and n

Well, the “algorithm” above is not really an algorithm yet, because we

S do not specify:
1. how to perform prime factorization on an integer?
2. how to find the common numbers from two lists of integers?
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 27

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization

Solution 2 - Prime
> factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

O Problem: Given an integen, find a sequence of prime numbeéfs

whose multiplication is.

O Find a list of prime number#® that are smaller than

Algorithm 0.5: PRIME FACTORIZATION(n)

71— 2
while 7 < n
(if n%i =0
)

do { then {SH n

n <— —
1

else: « next prime number

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 28

Solution 2 - Prime factorization

What will we lear today? O Problem: Given two lists of numbers?,,, and P,,, find a list of the

Cryptography common number®’. from P,,, and P,,.

Basic Arithmetic . . o B
Modular Arithmetic B Example' Pm o {2’ 77 7}7 Pn T {27 37 7} = PC T {27 7}

Greatest Common Divisor D AlgOI’Ithm

& Modular division

Definition
Solution 1 - Brute force 1 .
ooption 2 - Brute Algorithm 0.6: CoMMON ELEMENTS(FP,,, P,,)
factorization
Solution 2 - Prime . .
factorzaton comment:initially we create an empty lisP.
olution 2 - Prime
> factorization

Solution 3 - Euclidean foreachi ¢ P,

tieP,

ﬁlr?i;'fzglion of Euclid’s do then {P e < 1 .

3‘33?3? 3 - Euclidean remove ¢ from P,

Algorithm .

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 29

Solution 3 - Euclidean Algorithm

What will we learn today? 1 Observation 1: ng(m, n) = ng(’rL, m%’l’b)

SYPRGIERRY O Observation 2 ged(m,0) = m

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Proof.]

Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization S . »
Solution 2 - Prime W e -
factorization .)
Solution 2 - Prime (image of Euclid)
factorization

Solution 3 - Euclidean
> Algorithm O Example ged(98,42) =
Solution 3 - Euclidean .
Algorithm O Algorithm
An extension of Euclid’s
algorithm

Solution 3 - Euclidean AlgOI‘Ithm 0.7: ng(m, n)

Algorithm
Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 30

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm

Solution 3 - Euclidean
> Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

O Time complexity of Algorithm 0.77?

Hint: If a > b, thena%b < a/2

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 31

An extension of Euclid’s algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm

An extension of
> Euclid's algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

GCD is key to dividing in the modular world
Lemma: If d divides botha andb andd = ax + by for some integers
x andy, thend = ged(a, b).

— proof:

Example:ged(13,4) =1,13-1+4-(=3) =1

Algorithm 0.8: EXT-gcd(a, b)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 32

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition
Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm

Solution 3 - Euclidean
> Algorithm

Modulo division

Generate random primes

Conclusion

O Is Algorithm 0.8 correct?

0 Time complexity of Algorithm 0.8?

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 33

Modulo division

What will we learn today? D

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division D

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 2 - Prime
factorization

Solution 3 - Euclidean
Algorithm

Solution 3 - Euclidean
Algorithm

An extension of Euclid’s
algorithm

Solution 3 - Euclidean D
Algorithm

> Modulo division

Generate random primes

Conclusion

In real number arithmetié,/a =b-1/a =b-a~?

For modulo division(b%N)/(a%N) = (b%N)(a"*%N)

— We need to define—!
— rxz=atifar=1 mod N
— ar=1 mod N=ar+ Ny=1=ged(a,N) =1

Modular division theorem. For any mod N, a is invertible ifa and
N are relatively prime. If: is invertible,a=! can be found in time
O(n?) (n = log N) using the extended Euclid algorithm.

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 34

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random
> primes

Primality testing
Primality testing

Generate random primes

Primality testing
Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 35

Primality testing

What will we learn today? D

Cryptography |:|

Basic Arithmetic

[

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

> Primality testing
Primality testing

Primality testing

Primality testing
Generate a random prime

Conclusion

Given a numbep how do we know ifp is a prime?
We wish to answer this without trying to factopr
We do this based on Fermat’s little theorem (AD 1640)

If pis a prime, then for every < a < p,

proof.

a?1=1 modp

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 36

Primality testing

What will we learn today? D

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

> Primality testing
Primality testing

Primality testing
Generate a random prime

Conclusion

Our 1st attempt

 Pass - “prime’
F\“ “composite”

ail

Pick some a Is a1 =1 mod N?

Fermat’s test

Problem: Note that the theorem is “l§ is prime, then” But our

test above is taking another direction & —! =1 mod N, thenN

IS prime.

ConsequenceSome non-prime (composite) number may have some
sucha which satisfies the “If” statement above.

— In fact, there are a set of (very rare) numbers that laveuch
1 < a < p which satisfies the “If” statement above. These
numbers are called “Carmichael numbers.” (We will ignore these
numbers for now)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 37

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

Primality testing

> Primality testing
Primality testing
Generate a random prime

Conclusion

Lemma: If ¥~ £ 1 mod N for somea which is relatively prime
to N, then there must have at Iez%tof sucha < N.

— proof:

This basically means:

— If Nisprime,a®¥ ' =1 mod N foralla < N
— If Nisnotprimea™~! =1 mod N for < £ number ofa < N

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 38

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

> Primality testing
Generate a random prime

Conclusion

Our strategy: Run our 1st algorithintimes

— Pr(1st algorithm returns ‘yes’ anil is prime)=1

— Pr(1st algorithm returns ‘yes’ amil is not prime)< %

— Pr(All & instances of 1st algorithm return ‘yes’ andis not
prime) < ¢

— The error decreases ‘exponentially’

Our 2nd attempt

Algorithm 0.9: PRIMIALITY 2(N)

Analysis of Algorithms

CS483 Lecture 02-Algorithms with numbers — 39

Generate a random prime

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing
Primality testing
Primality testing
Primality testing

Generate a random
prime

0 Observation: There are many prime numbers.

— Lagrange’s prime number theorem Let 7 (x) be the number of
primes< z, thenm(z) ~ .

— Given an-bit long numberV, there are abou% prime numbers

0 Now we describe a brute force method to generate a random prime
number:

Algorithm 0.10: RANDOMPRIME(n)

Conclusion
.
O What is the time complexity of RNDOMPRIME?
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 40

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

> Conclusion

Back to RSA

Summary CO”CIUSK)”

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 41

Back to RSA

What will we learn today? 1 M ak| N g R SA keyS

Cryptography

N — Two prime numberps andg and N = pq.

VA — e be any relative prime tgp — 1)(¢ — 1)

Greatest Common Divisor — d — (6%(]9 - 1)(q - 1))_1

& Modular division

Generaterandomprimes (1 Communicate using RSA keys

Conclusion

> Back (o RSA — Alice encodes a messagee(x) = %N

Summary — Bob decodes a messagie(z)) = (e(z))?* %N
O Why does it work? We will show thdt:*%N)¢ = %N
— proof:

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 42

Summary

What will we learn today?] We talked about

Cryptography . . .
Basic Arithmetic — Basic/Modulo arithmetic
Modular Arithmetic - G C D
Greatest Common Divisor — Primality and prime number generation
& Modular division . .
Generate random primes — Private/Public key cyrptography
_ — RSA
Conclusion
S 0 We've walked through Chapter 1.1-1.4. (Please read 1.5, hashing)

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers — 43

	What will we learn today?
	Cryptography
	Typical setting in cryptography
	Private-key cryptography
	Public-key cryptography (PKC)
	Public-key cryptography
	RSA
	RSA
	RSA
	RSA

	Basic Arithmetic
	Integer addition
	Integer multiplication
	Integer multiplication
	Integer multiplication
	Integer division

	Modular Arithmetic
	Definitions
	Modulo Addition/Multiplication
	Modulo Addition/Multiplication
	Modulo Exponentiation
	Modulo Exponentiation

	Greatest Common Divisor & Modular division
	Definition
	Solution 1 - Brute force
	Solution 2 - Prime factorization
	Solution 2 - Prime factorization
	Solution 2 - Prime factorization
	Solution 3 - Euclidean Algorithm
	Solution 3 - Euclidean Algorithm
	An extension of Euclid's algorithm
	Solution 3 - Euclidean Algorithm
	Modulo division

	Generate random primes
	Primality testing
	Primality testing
	Primality testing
	Primality testing
	Generate a random prime

	Conclusion
	Back to RSA
	Summary

