
Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 1

CS483 Analysis of Algorithms
Lecture 02 – Algorithms with numbers ∗

Jyh-Ming Lien

January 29, 2009

∗this lecture note is based onAlgorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani andIntro-
duction to the Design and Analysis of Algorithms by Anany Levitin.

What will we learn today?

⊲
What will we learn
today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 2

� Basic and modulo arithmetic
� Greatest common divisor (GCD)
� Check if a number is prime (an easier problem)
� Prime number factorization (a very hard problem)
� Generate random prime number with arbitrary length
� Cryptography:

– Private/Public-key cryptography (symmetric/asymmetric
cryptography).

– RSA cryptosystem
– Based on the fact that primality check can be done much more

efficiently than factoring.

Cryptography

What will we learn today?

⊲ Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 3

Typical setting in cryptography

What will we learn today?

Cryptography

⊲
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 4

� The typical setting

– Alice and Bob wish to communicate in private
– Eve will try to find out what they are saying
– When Alice wants to send a messagex, she encode it ase(x)
– Bob then applies his decryption functiond(·) to get his message

d(e(x)) = x
– Hopefully, Eve does not know how to converte(x) back toe, i.e.,

d(·)

Private-key cryptography

What will we learn today?

Cryptography
Typical setting in
cryptography

⊲
Private-key
cryptography

Public-key cryptography
(PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 5

� Alice and Bob choose a secret codebook (key) together
� Example: One time pad usingbitwise xor

– Encodeer(x) = x⊕ r
– Decodeer(er(x)) =

� Example:

– x = 11110000
– r = 01110010
– Encoded message
– Decoded message

� Drawbacks of One time pad:

–
–

� A more secure/popular private-key cryptography: Advanced
Encryption Standard (AES) (by Rijmen and Daeme 1998)

Public-key cryptography (PKC)

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography

⊲
Public-key
cryptography (PKC)

Public-key cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 6

� For thousands of years, it was believed that the only way to establish
secure communications was to first exchange a secret codebook
(private key).

� PKC is a ground breaking idea in cryptography (by Merkle, Diffie and
Hellman 1976)

(Ralph Merkle, Martin Hellman, Whitfield Diffie, Public Key Cryptography (PKC)

Inventors (c) Chuck Painter/Stanford News Service.)

Public-key cryptography

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

⊲
Public-key
cryptography

RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 7

� Example:

(Images from Wikipedia)

RSA

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

⊲ RSA

RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 8

� RSA is a type of PKC (by Rivest, Shamir, Adleman 1978)

Ronald Rivest Adi Shamir Len Adleman
(Images fromhttp://www.livinginternet.com/)

� A brief history of RSA:

– RSA is inspired by Diffie and Hellman’s paper on PKC
– First publicized by Martin Gardner on Scientific American in 1977
– NSA attempts to prevent RSA being distributed
– RSA published on CACM in 1978
– RSA was written up by Adam Back in 5 line PERL program

(3-line version, from http://www.cypherspace.org/adam/rsa/)

RSA

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

RSA

⊲ RSA

RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 9

� As usual, the US Government prohibited exporting the code outside of
the country

� People started to protest and put the PERL code:

– in their e-mail signatures,
– on t-shirts, and
– on their skins...

(Images from http://www.cypherspace.org/adam/rsa/)

� In Sep 2000, the US patent for RSA expired

RSA

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

RSA

RSA

⊲ RSA

RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 10

� Making RSA keys

–
–
–
– Bob’s public key:
– Bob’s private key:

� Communicate using RSA keys

– Alice encodes a messagex: e(x) = xe%N
– Bob decodes a message:d(e(x)) = (e(x))d%N
– If Eve wants to decode a encrypted message, she will need to

⊲

⊲

� The security of RSA is based the following simple fact

–

RSA

What will we learn today?

Cryptography
Typical setting in
cryptography

Private-key cryptography
Public-key cryptography
(PKC)

Public-key cryptography

RSA

RSA

RSA

⊲ RSA

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 11

� RSA is based heavily on number theory

– modulo arithmetic
– prime number generation

� What do we need to in RSA?

– An algorithm to generate prime numbers with arbitrary length
– An algorithm to computexy%N for arbitrary largex andy
– An algorithm to compute the inverse of a modulo, i.e.,(x%N)−1

Basic Arithmetic

What will we learn today?

Cryptography

⊲ Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 12

Integer addition

What will we learn today?

Cryptography

Basic Arithmetic

⊲ Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 13

� Example:

� Important observation: The sum of any three single-bit (digit)
numbers is at most two bits (digits) long.

� Complexity:

� Can we do better?

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

⊲ Integer multiplication

Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 14

� What is the time complexity of multiplying two integers usingthe algorithms
we learned in elementary schools?
Example: how do you compute this:1101 × 1011?

� Complexity:

� Is there a better way of multiplying two integers than this elementary-school
method?

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

⊲ Integer multiplication

Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 15

� Russian peasant method (This is the method in Al Khwarizmi’s book)
� Computingxy

– If y is even,x · y = 2(x · y

2
)

– If y is odd,x · y = x + 2(x · y−1

2
)

� Example:123× 77=

Integer multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

⊲ Integer multiplication

Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 16

� Algorithm
Algorithm 0.1: MULTIPLY (x, y)

� Time complexity:

� Advantage:
very fast and easy hardware implementation!

� Can we do better?

Integer division

What will we learn today?

Cryptography

Basic Arithmetic

Integer addition

Integer multiplication

Integer multiplication

Integer multiplication

⊲ Integer division

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 17

� Computing(q, r) = x/y

– If x is even,
– If x is odd,
– If x < y, (q, r) = (0, x)

� Example:123/17=

� Time complexity?

Modular Arithmetic

What will we learn today?

Cryptography

Basic Arithmetic

⊲ Modular Arithmetic

Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 18

Definitions

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

⊲ Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 19

� N dividesx if x mod N = 0
� x mod N = x%N = x− kN
� If x%N = r, then(x− r)%N = 0
� It is usually convenient to write:

(x ≡ y mod N) iff (x mod N) = (y mod N).

� Example:

– 31 ≡ 13 mod 3
– 14 ≡ 59 mod 5

Modulo Addition/Multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions

⊲
Modulo
Addition/Multiplication

Modulo
Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 20

� If x ≡ x′ mod N andy ≡ y′ mod N , then:

x + y ≡ x′ + y′ mod N

and

xy ≡ x′y′ mod N

� More properties:

– x + (y + z) ≡ (x + y) + z mod N (associativity)
– xy ≡ yx mod N (commutativity)
– x(y + z) ≡ xy + xz mod N (distributivity)

Modulo Addition/Multiplication

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
Addition/Multiplication

⊲
Modulo
Addition/Multiplication

Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 21

� Addition: (x%N) + (y%N) = (x + y)%N

– Complexity:

� Multiplication (x%N)(y%N) = (xy%N)

– Complexity:

Modulo Exponentiation

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication

⊲ Modulo Exponentiation

Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 22

� Exponentiation:xy%N

– Brute force: Computexy then computexy%N

⊲ Problem:

– Incremental:x%N → x2%N → x3%N → · · · → xy%N

⊲ Problem:

Modulo Exponentiation

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Definitions
Modulo
Addition/Multiplication
Modulo
Addition/Multiplication

Modulo Exponentiation

⊲ Modulo Exponentiation

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 23

� Decrease-n-conquer

– If y is even,

– If y is odd,

Algorithm 0.2: MODEXP(x, y, N)

Greatest Common Divisor & Modular division

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

⊲
Greatest Common
Divisor & Modular
division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 24

Definition

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

⊲ Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 25

� Greatest Common Divisor Problem: Given two non-negative
integersm andn, find the largest integer, denoted asgcd(m, n), that
can evenly divide bothm andn.

� Example: Ifm = 98 andn = 42, thengcd(m, n) =
� How do we design an algorithm to solve this problem?

Solution 1 - Brute force

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

⊲ Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 26

� Observation: the range ofgcd(m, n) is in [1,min(m, n)]

Algorithm 0.3: gcd(m, n)

for i = {min(m, n), · · · , 1}

do
{

if m%i = 0 and n%i = 0
then return (i)

� How long does the algorithm take?

� Can we do better?

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force

⊲
Solution 2 - Prime
factorization

Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 27

� Observation: use the strategy that we learned in the middle schools,
i.e., “Prime factorization”.

� Example: m = 98 = 2× 7× 7 andn = 42 = 2× 3× 7
⇒ gcd(m, n) = 2× 7 = 14

� Algorithm : gcd(m, n)

Algorithm 0.4: gcd(m, n)

Perform prime factorization for m
Perform prime factorization for n
Find and multiply the common prime factors from m and n

� Well, the “algorithm” above is not really an algorithm yet, because we
do not specify:

1. how to perform prime factorization on an integer?
2. how to find the common numbers from two lists of integers?

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization

⊲
Solution 2 - Prime
factorization

Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 28

� Problem: Given an integern, find a sequence of prime numbersS,
whose multiplication isn.

� Find a list of prime numbersP that are smaller thann

Algorithm 0.5: PRIME FACTORIZATION(n)

i← 2
while i < n

do















if n%i = 0

then
{

S ← i
n← n

i

elsei← next prime number

Solution 2 - Prime factorization

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization

⊲
Solution 2 - Prime
factorization

Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 29

� Problem: Given two lists of numbers,Pm andPn, find a list of the
common numbersPc from Pm andPn.

� Example: Pm = {2, 7, 7}, Pn = {2, 3, 7} ⇒ Pc = {2, 7}
� Algorithm

Algorithm 0.6: COMMON ELEMENTS(Pm, Pn)

comment: initially we create an empty listPc

for each i ∈ Pm

do







if i ∈ Pn

then
{

Pc ← i
remove i from Pn

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization

⊲
Solution 3 - Euclidean
Algorithm

Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 30

� Observation 1: gcd(m, n) = gcd(n, m%n)
� Observation 2: gcd(m, 0) = m

Proof.

(image of Euclid)

� Example: gcd(98, 42) =
� Algorithm

Algorithm 0.7: gcd(m, n)

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm

⊲
Solution 3 - Euclidean
Algorithm

An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 31

� Time complexity of Algorithm 0.7?

– Hint: If a ≥ b, thena%b < a/2

An extension of Euclid’s algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm

⊲
An extension of
Euclid’s algorithm

Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 32

� GCD is key to dividing in the modular world
� Lemma: If d divides botha andb andd = ax + by for some integers

x andy, thend = gcd(a, b).

– proof:

� Example:gcd(13, 4) = 1, 13 · 1 + 4 · (−3) = 1

Algorithm 0.8: EXT-gcd(a, b)

Solution 3 - Euclidean Algorithm

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm

⊲
Solution 3 - Euclidean
Algorithm

Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 33

� Is Algorithm 0.8 correct?

� Time complexity of Algorithm 0.8?

Modulo division

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Definition

Solution 1 - Brute force
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 2 - Prime
factorization
Solution 3 - Euclidean
Algorithm
Solution 3 - Euclidean
Algorithm
An extension of Euclid’s
algorithm
Solution 3 - Euclidean
Algorithm

⊲ Modulo division

Generate random primes

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 34

� In real number arithmetic,b/a = b · 1/a = b · a−1

� For modulo division,(b%N)/(a%N) = (b%N)(a−1%N)

– We need to definea−1

– x = a−1 if ax ≡ 1 mod N
– ax ≡ 1 mod N ⇒ ax + Ny = 1⇒ gcd(a, N) = 1

� Modular division theorem. For anya mod N , a is invertible ifa and
N are relatively prime. Ifa is invertible,a−1 can be found in time
O(n3) (n = log N) using the extended Euclid algorithm.

Generate random primes

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

⊲
Generate random
primes

Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 35

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

⊲ Primality testing

Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 36

� Given a numberp how do we know ifp is a prime?
� We wish to answer this without trying to factorp.
� We do this based on Fermat’s little theorem (AD 1640)

– If p is a prime, then for every1 ≤ a < p,

ap−1 ≡ 1 mod p

– proof.

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

⊲ Primality testing

Primality testing

Primality testing

Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 37

� Our 1st attempt

� Problem: Note that the theorem is “Ifp is prime, then” But our
test above is taking another direction “IfaN−1 ≡ 1 mod N , thenN
is prime.

� Consequence: Some non-prime (composite) number may have some
sucha which satisfies the “If” statement above.

– In fact, there are a set of (very rare) numbers that haveall such
1 ≤ a < p which satisfies the “If” statement above. These
numbers are called “Carmichael numbers.” (We will ignore these
numbers for now)

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

Primality testing

⊲ Primality testing

Primality testing

Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 38

� Lemma: If aN−1 6≡ 1 mod N for somea which is relatively prime
to N , then there must have at leastN

2
of sucha < N .

– proof:

� This basically means:

– If N is prime,aN−1 ≡ 1 mod N for all a < N
– If N is not prime,aN−1 ≡ 1 mod N for < N

2
number ofa < N

Primality testing

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

⊲ Primality testing

Generate a random prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 39

� Our strategy: Run our 1st algorithmk times

– Pr(1st algorithm returns ‘yes’ andN is prime)=1
– Pr(1st algorithm returns ‘yes’ andN is not prime)≤ 1

2

– Pr(All k instances of 1st algorithm return ‘yes’ andN is not
prime)≤ 1

2k

– The error decreases ‘exponentially’

� Our 2nd attempt

Algorithm 0.9: PRIMIALITY 2(N)

Generate a random prime

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Primality testing

Primality testing

Primality testing

Primality testing

⊲
Generate a random
prime

Conclusion

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 40

� Observation: There are many prime numbers.

– Lagrange’s prime number theorem. Let π(x) be the number of
primes≤ x, thenπ(x) ≈ x

ln x
.

– Given an-bit long numberN , there are aboutN
n

prime numbers

� Now we describe a brute force method to generate a random prime
number:

Algorithm 0.10: RANDOMPRIME(n)

� What is the time complexity of RANDOMPRIME?

Conclusion

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

⊲ Conclusion

Back to RSA

Summary

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 41

Back to RSA

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

⊲ Back to RSA

Summary

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 42

� Making RSA keys

– Two prime numbersp andq andN = pq.
– e be any relative prime to(p − 1)(q − 1)
– d = (e%(p − 1)(q − 1))−1

� Communicate using RSA keys

– Alice encodes a messagex: e(x) = xe%N

– Bob decodes a message:d(e(x)) = (e(x))d%N

� Why does it work? We will show that(xe%N)d = x%N

– proof:

Summary

What will we learn today?

Cryptography

Basic Arithmetic

Modular Arithmetic

Greatest Common Divisor
& Modular division

Generate random primes

Conclusion

Back to RSA

⊲ Summary

Analysis of Algorithms CS483 Lecture 02-Algorithms with numbers – 43

� We talked about

– Basic/Modulo arithmetic
– GCD
– Primality and prime number generation
– Private/Public key cyrptography
– RSA

� We’ve walked through Chapter 1.1-1.4. (Please read 1.5, hashing)

	What will we learn today?
	Cryptography
	Typical setting in cryptography
	Private-key cryptography
	Public-key cryptography (PKC)
	Public-key cryptography
	RSA
	RSA
	RSA
	RSA

	Basic Arithmetic
	Integer addition
	Integer multiplication
	Integer multiplication
	Integer multiplication
	Integer division

	Modular Arithmetic
	Definitions
	Modulo Addition/Multiplication
	Modulo Addition/Multiplication
	Modulo Exponentiation
	Modulo Exponentiation

	Greatest Common Divisor & Modular division
	Definition
	Solution 1 - Brute force
	Solution 2 - Prime factorization
	Solution 2 - Prime factorization
	Solution 2 - Prime factorization
	Solution 3 - Euclidean Algorithm
	Solution 3 - Euclidean Algorithm
	An extension of Euclid's algorithm
	Solution 3 - Euclidean Algorithm
	Modulo division

	Generate random primes
	Primality testing
	Primality testing
	Primality testing
	Primality testing
	Generate a random prime

	Conclusion
	Back to RSA
	Summary

