CS483 Analysis of Algorithms Lecture 03 – Divide-n-Conquer *

Jyh-Ming Lien

February 05, 2009

^{*}this lecture note is based on *Algorithms* by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani and *Introduction to the Design and Analysis of Algorithms* by Anany Levitin.

Today, we will learn...

▷ Today, we will learn	
------------------------	--

Introduction

Sort & Select

Multiplic	atior
-----------	-------

Conclusion

 \Box In this lecture we will two main topics:

- Sort and selection
 - Mergesort and quicksort
 - ▶ Binary search
 - Closest-pair and convex-hull algorithms
- Multiplication
 - Multiplication of large integers
 - Matrix multiplication
 - Polynomial multiplication
- □ We will approach these problems using the divide-and-conquer technique

Today, we will learn ...

▷ Introduction

Divide and Conquer

Divide and Conquer

Divide and Conquer

Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Introduction

Divide and Conquer

Today, we will learn...

Introduction

Divide and Conquer
 Divide and Conquer
 Divide and Conquer
 Examples
 Master Theorem
 Sort & Select

Multiplication

Conclusion

 Divide and conquer was a successful military strategy long before it became an algorithm design strategy

- Coalition uses divide-conquer plan in Fallujah

By Rowan Scarborough and Bill Gertz, THE WASHINGTON TIMES Coalition troops are employing a divide-and-conquer strategy in Fallujah, Iraq, capitalizing on months of pinpointed intelligence to seal off terrorist-held neighborhoods and then attack enemy pockets.

□ Example: Your CS 483 instructor give you a 50-question assignment today and ask you to turn it in the tomorrow. What should you do?

Divide and Conquer

 \Box

Today, we will learn ...

Introduction

Divide and Conquer

 \triangleright Divide and Conquer

Divide and Conquer

Examples

Master Theorem

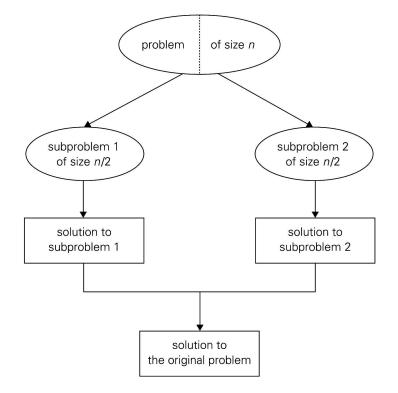
Sort & Select

Multiplication

Conclusion

The most-well known algorithm design strategy:

- 1. Divide instance of problem into two or more smaller instances
- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions



Analysis of Algorithms

Today, we will learn...

Introduction

Divide and Conquer

Divide and Conquer

Divide and Conquer

 \triangleright Examples

Master Theorem

Sort & Select

Multiplication

Conclusion

Example: Given a list $A = \{2, 3, 6, 4, 12, 1, 7\}$, compute $\sum_{i=1}^{7} A_i$

Master Theorem

Today, we will learn...

Introduction

Divide and Conquer Divide and Conquer Divide and Conquer

Examples

▷ Master Theorem

Sort & Select

Multiplication

Conclusion

If we have a problem of size n and our algorithm divides the problems into b instances, with a of them needing to be solved. Then we can set up our running time T(n) as: T(n) = aT(n/b) + f(n), where f(n) is the time spent on dividing and merging.

 $\label{eq:master} \Box \quad \text{Master Theorem: If } f(n) \in \Theta(n^d) \text{, with } d \geq 0 \text{, then}$

$$T(n) = \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

 \Box Examples:

1.
$$T(n) = 4T(n/2) + n \Rightarrow T(n) =$$

2.
$$T(n) = 4T(n/2) + n^2 \Rightarrow T(n) =$$

3.
$$T(n) = 4T(n/2) + n^3 \Rightarrow T(n) =$$

Today, we will learn ...

Introduction

Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem **Binary Search Binary Search Closest Pair** Closest Pair Convex Hull Quickhull Multiplication Conclusion

Sort & Select

Sorting: Mergesort

Introduction Sort & Select ▷ Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull Quickhull	
 Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Closest Pair Closest Pair Convex Hull 	
Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Analysis of Quicksort Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Why is Quicksort quicker? The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
The Selection Problem Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Binary Search Binary Search Closest Pair Closest Pair Convex Hull	
Binary Search Closest Pair Closest Pair Convex Hull	
Closest Pair Closest Pair Convex Hull	
Closest Pair Convex Hull	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	

Given an array of n numbers, sort the element from small to large. **Algorithm 0.1:** MERGESORT($A[1 \cdots n]$)

Sorting: Mergesort

Today, we will learn... Introduction Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem **Binary Search Binary Search Closest Pair Closest Pair** Convex Hull Quickhull Multiplication Conclusion

 $\square \quad \text{Merge two sorted arrays, } B \text{ and } C \text{ and put the result in } A \\ \hline \text{Algorithm 0.2: } \text{Merge}(B[1 \cdots p], C[1 \cdots q], A[1 \cdots p + q]) \\ \end{array}$

Today, we will learn	□ Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 99
Introduction	
Sort & Select	
Sorting: Mergesort	
Sorting: Mergesort	
Sorting: Mergesort Example	
Analysis of Merge Sort	
Sorting: Quicksort	
Sorting: Quicksort	
Example	
Analysis of Quicksort Why is Quicksort quicker?	
The Selection Problem	
Binary Search	
Binary Search	
Closest Pair	
Closest Pair	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	
	□ Is Mergesort stable?

Analysis of Merge Sort

Today, we will learn ...

Introduction

Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem **Binary Search Binary Search Closest Pair** Closest Pair Convex Hull Quickhull Multiplication Conclusion

 \Box $C_{worst}(n)$

Sorting: Quicksort

Today, we will learn	\Box Given an array of <i>n</i> numbers, sort the element from small to large.		
Introduction	Algorithm 0.3: QUICKSORT $(A[1 \cdots n])$		
Sort & Select	Algorithm 0.5: $QUICKSORI(A[1 \cdots n])$		
Sorting: Mergesort			
Sorting: Mergesort			
Sorting: Mergesort			
Example			
Analysis of Merge Sort			
Sorting: Quicksort			
Sorting: Quicksort			
Example			
Analysis of Quicksort			
Why is Quicksort quicker?			
The Selection Problem			
Binary Search			
Binary Search			
Closest Pair			
Closest Pair			
Convex Hull			
Quickhull			
Multiplication			
Conclusion			
	P P P		
	\Box A[1] in the above algorithm is called pivot $ P P P $		

Today, we will learn	Example: 24, 11, 91, 10, 22, 32, 22, 3, 7, 22
Introduction	1 , , , , , , , , , ,
Sort & Select	
Sorting: Mergesort	
Sorting: Mergesort	
Sorting: Mergesort Example	
Analysis of Merge Sort	
Sorting: Quicksort	
Sorting: Quicksort Example	
Analysis of Quicksort	
Why is Quicksort quicker?	
The Selection Problem	
Binary Search	
Binary Search	
Closest Pair	
Closest Pair	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	
	Is Quicksort stable?

Analysis of Quicksort

Today, we will learn ...

Introduction

Sort & Select Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example ▷ Analysis of Quicksort Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull Quickhull

Quiekiluii

Multiplication

Conclusion

 $C_{worst}(n)$

 \Box $C_{best}(n)$

 $\Box \quad C_{avg}(n)$

Today, we will learn Introduction	Because quicksort allows very fast "i
Sort & Select Sorting: Mergesort	Algorithm 0.4: PARTITION($A[a \cdots b]$)
Sorting: Mergesort Sorting: Mergesort	
Example Analysis of Merge Sort Sorting: Quicksort	
Sorting: Quicksort Example	
Analysis of Quicksort Why is Quicksort ▷ quicker?	
The Selection Problem	
Binary Search	
Binary Search	
Closest Pair	
Closest Pair	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	

st "in-place partition"

Analysis of Algorithms

Today, we will learn	
Introduction	
Sort & Select	
Sorting: Mergesort	
Sorting: Mergesort	
Sorting: Mergesort Example	
Analysis of Merge Sort	
Sorting: Quicksort	
Sorting: Quicksort Example	
Analysis of Quicksort	
Why is Quicksort quicker?	
\triangleright The Selection Problem	
Binary Search	
Binary Search	
Closest Pair	
Closest Pair	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	

□ Similar to partition in quicksort!

 \Box Find the k-th smallest element in an array A with n unique elements

```
Algorithm 0.5: SELECT(A[1 \cdots n], k)
```

The algorithm above will work well for A with unique elements. How do you change to make it work for more general cases?

 \Box Time complexity:

Binary Search

Today, we will learn... Introduction Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem ▷ Binary Search **Binary Search** Closest Pair **Closest Pair** Convex Hull Quickhull Multiplication

Conclusion

□ Imagine that you are placed in an unknown building and you are given a room number, you need to find your CS 483 instructor. What will you do?

□ **Binary Search**:

Very efficient algorithm for searching in sorted array
 Example: find 70 in {3, 14, 27, 31, 39, 42, 55, 70, 74, 81, 85, 93, 98}

- Efficient search in even in high dimensional unknown space **Example**:

Binary Search

Today, we will learn... Introduction Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem **Binary Search** ▷ Binary Search **Closest Pair** Closest Pair Convex Hull Quickhull Multiplication Conclusion

Given a sorted array A of n numbers, find a key K in A Algorithm 0.6: BINARYSEARCH $(A[1 \cdots n], K)$

□ Binary search is in fact a bad (degenerate) example of divide-and-conquer

Analysis of Binary Search

 $\Box \quad C_{worst}(n)$

 \Box $C_{best}(n)$

Closest Pair

Today, we will learn...

Introduction

Sort & Select

Sorting: Mergesort

Sorting: Mergesort

Sorting: Mergesort

Example

Analysis of Merge Sort

Sorting: Quicksort

Sorting: Quicksort

Example

Analysis of Quicksort

Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair

Convex Hull

Quickhull

Multiplication

Conclusion

\Box Find the closest distance between points in a given point set

Algorithm 0.7: $CP(P[1 \cdots n])$

comment: P is a set n points

Closest Pair

Today, we will learn	
Introduction	
Sort & Select	
Sorting: Mergesort	
Sorting: Mergesort	
Sorting: Mergesort Example	
Analysis of Merge Sort	
Sorting: Quicksort	
Sorting: Quicksort	
Example	
Analysis of Quicksort	
Why is Quicksort quicker?	
The Selection Problem	
Binary Search	
Binary Search	
Closest Pair	
Closest Pair	
Convex Hull	
Quickhull	
Multiplication	
Conclusion	

Find the closest distance between points in a given point set

Algorithm 0.8: COMBINE (c, P, P_1, P_2, d)

□ What is the time complexity?

Convex Hull

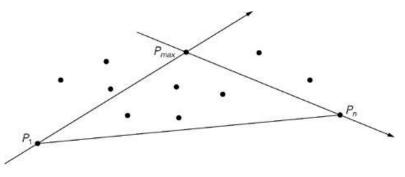
Today, we will learn... Introduction \Box Sort & Select Sorting: Mergesort Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example Analysis of Quicksort Why is Quicksort quicker? The Selection Problem **Binary Search Binary Search Closest Pair Closest Pair** Convex Hull Quickhull Multiplication Conclusion

Here we consider a divide-and-conquer algorithm called quickhull
Quickhull is similar to quicksort
why?

 \Box Observations (given a point set *P* in 2-d):

- The leftmost and rightmost points in *P* must be part of the convex hull

- The furthest point away from any line must be part of the convex hull
- Points in the triangle formed by any three points in P will **not** be part of the convex hull



Quickhull

Today, we will learn...

Introduction

Sort & Select Sorting: Mergesort Sorting: Mergesort Example Analysis of Merge Sort Sorting: Quicksort Sorting: Quicksort Example

Analysis of Quicksort Why is Quicksort quicker?

The Selection Problem

Binary Search

Binary Search

Closest Pair

Closest Pair Convex Hull

➢ Quickhull

Multiplication

Conclusion

Qhull

| |

Algorithm 0.9: QHULL($P[1 \cdots n]$)

comment: P is a set n points

□ Animation: http://www.cs.princeton.edu/~ah/alg_anim/version1/QuickHull.html

Analysis of Algorithms

 \Box Worst case:

 \Box Best case:

 \Box Avg case:

Today, we will learn ...

Introduction

Sort & Select

▷ Multiplication Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

Multiplication

Interger multiplication

Today, we will learn ...

Introduction

Sort & Select

Multiplication

▷ Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

□ What is the time complexity of multiplying two integers using the algorithms we learned in elementary schools?
 Example: how do you compute this: 12345 × 67890?

□ Is there a better way of multiplying two intergers than this elementary-school method?

Carl Friedrich Gauss (1777-1855) discovered that $AB = (a10^{\frac{n}{2}} + b)(c10^{\frac{n}{2}} + d) =$

Example: how do you compute this: $12345 \times 67890?$

Carl Friedrich Gauss

Interger multiplication

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication ▷ Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

□ Divid-and-conquer interger multiplication

Algorithm 0.10: $M(A[1 \cdots n], B[1 \cdots n])$

What is the time complexity?

Today, we will learn...

Introduction

Sort & Select

Multiplication Interger multiplication Interger multiplication ▷ Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

Strassen's Matrix Multiplication:

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & A_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$
$$m_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
$$m_2 = (A_{21} + A_{22})B_{11}$$
$$m_3 = A_{11}(B_{12} - B_{22})$$
$$m_4 = A_{22}(B_{21} - B_{11})$$
$$m_5 = (A_{11} + A_{12})B_{22}$$
$$m_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$
$$m_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

 \square

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication ▷ Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

What is the time complexity?

□ Do you still remember what the time complexity of the brute-force algorithm is?

Today, we will learn ...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial ▷ multiplication Representing polynomial

Polynomial multiplication

Polynomial evaluation

Horner's Rule

A $n \log n$ time polynomial evaluation

n-th roots of unity

n-th roots of unity

A $n \log n$ time

polynomial evaluation

A $n \log n$ time

polynomial evaluation A $n \log n$ time

polynomial interpolation

A $n \log n$ time polynomial interpolation

A closer look

Conclusion

two degree-n polynomials:

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$B(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

Multiplication of two degree-
$$n$$
 polynomial

$$C(x) = A(x)B(x) = c_{2n}x^{2n} + c_{2n-1}x^{2n-1} + \dots + c_1x + c_0$$

 \Box The coefficient c_k is:

 \Box A brute force method for computing C(x) will have time complexity=

 \Box Can we do better?

Analysis of Algorithms

Today, we will learn... Introduction Sort & Select Multiplication Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing \triangleright polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

Fact: A degree-n polynomial is uniquely defined by any n + 1 distinct points

 \Box A degree-*n* polynomial A(x) can be represented by:

 \Box We can convert between these two representations: 1.5cm

The value representation allows us to develop faster algorithm!

- We only need 2n + 1 points for C(x)
- It's easy and efficient to generate these 2n + 1 points from A(x)and B(x)

Today, we will learn ...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polvnomial \triangleright multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation

A $n \log n$ time polynomial interpolation A $n \log n$ time

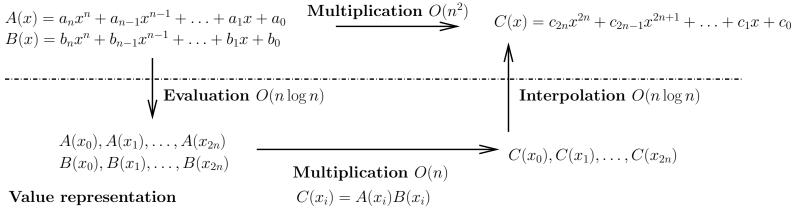
polynomial interpolation A closer look

Conclusion

General idea:

- 1. Convert *A* and *B* to value representation (Evaluation)
- 2. Perform multiplication to obtain C in value representation
- 3. Convert C back to coefficient representation (Interpolation)

$Coefficient\ representation$



Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication \triangleright Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

```
\Box \quad f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0
\Box \quad \text{Polynomial evaluation: Given } x, \text{ compute } f(x)
\Box \quad \text{Brute force algorithm}
```

Algorithm 0.11: F(*x*)

Time complexity of this brute force algorithm?

 \Box Can we do better?

Horner's Rule

Today, we will learn ...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation ▷ Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

Horner's rule

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $(a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_1) x + a_0$
= $(\dots (a_n x + a_{n-1}) x + \dots) x + a_0$

□ Polynomial evaluation using Horner's rule

Algorithm 0.12:
$$F(x)$$

□ Time complexity: □ Example: $f(x) = 2x^4 - x^3 + 3x^2 + x - 5$ at x = 4 Today, we will learn... Introduction Sort & Select Multiplication Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time \triangleright polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

□ Basic idea: How we select x_i affects the run time. □ Example: If we pick $\pm x_0, \pm x_1, \ldots, \pm x_{n/2-1}$, then $A(x_i)$ and $A(-x_i)$ have many overlap

$$- x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 6 =$$

$$- A(x) =$$

- When evaluate x_i , $A(x_i) =$
- When evaluate $-x_i$, $A(-x_i) =$

 \Box What we need is x_i such that

Today, we will learn ...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation \triangleright *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation A closer look

Conclusion

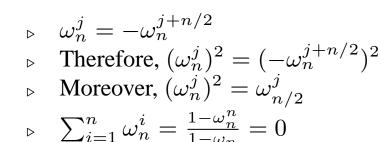
□ Idea: Use *n*-th roots of unity: $z^n = 1$ as our x_i □ Background:

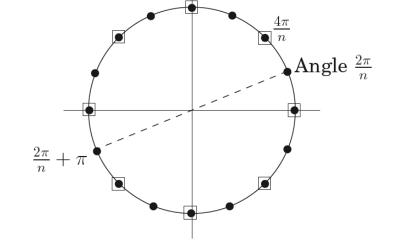
- Complex number $z = r(\cos(\theta) + i\sin(\theta))$

▶ Usually denoted as
$$re^{i\theta}$$
 or (r, θ)
▶ $(r_1, \theta_1) \times (r_2, \theta_2) = (r_1r_2, \theta_1 + \theta_2)$

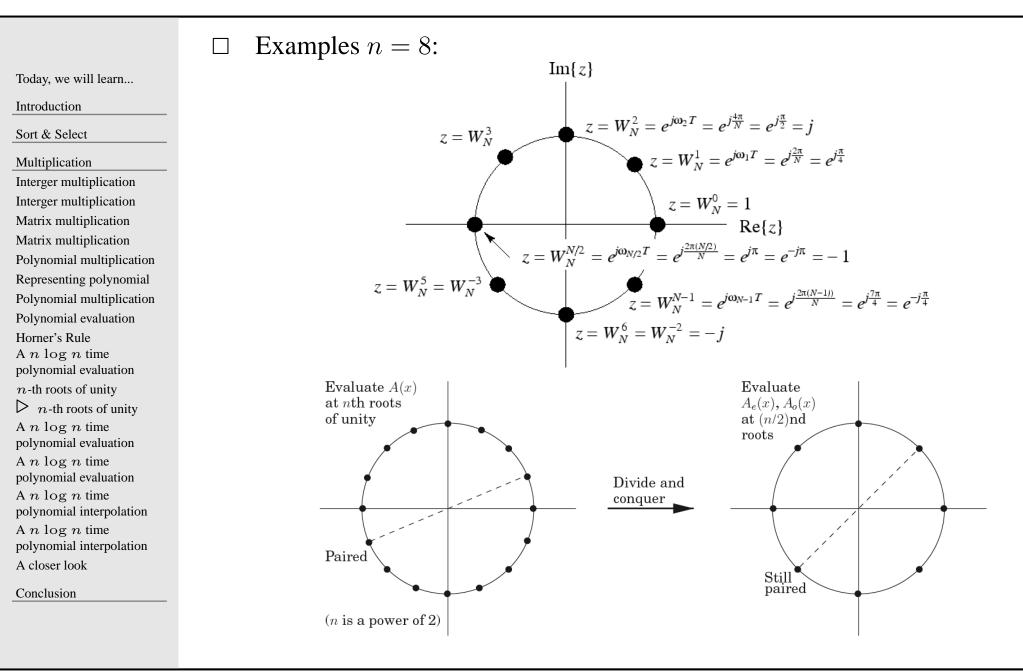
- Let $\omega_n = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}) = e^{2\pi i/n}$ be a complex *n*-th root of unity

- Other roots include: $\omega_n^2, \omega_n^3, \ldots, \omega_n^{n-1}, \omega_n^n$
- Properties:





n-th roots of unity



Today, we will learn	\Box FFT
Introduction	Algorithm 0.13: FFT($(a_0, a_1, a_2,, a_{n-1}), \omega$)
Sort & Select	Aigurum 0.13. $FFI((a_0, a_1, a_2, \dots, a_{n-1}), \omega)$
Multiplication	
Interger multiplication	
Interger multiplication	
Matrix multiplication	
Matrix multiplication	
Polynomial multiplication	
Representing polynomial	
Polynomial multiplication	
Polynomial evaluation	
Horner's Rule	
A $n \log n$ time	
polynomial evaluation	
n-th roots of unity	
n-th roots of unity	
A $n \log n$ time \triangleright polynomial evaluation	
A $n \log n$ time	
polynomial evaluation	
A $n \log n$ time	
polynomial interpolation	
A $n \log n$ time polynomial interpolation	
A closer look	
Conclusion	\Box Time complexity?

Today, we will learn ...

Introduction

Sort & Select

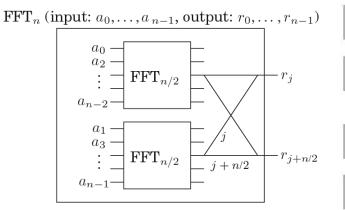
Multiplication

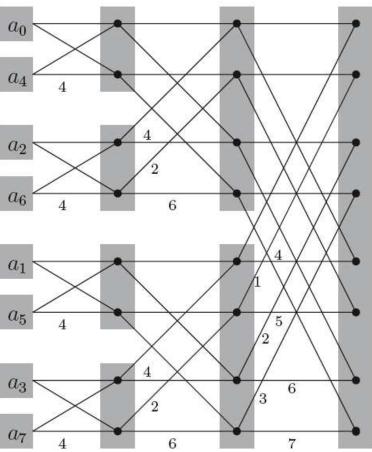
Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time \triangleright polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation

A closer look

Conclusion

□ Hardware implementation





Today, we will learn... Convert the values $C(x_i)$ back to coefficients: $\{c_i\}=FFT(C(x_i), \omega^{-1})$ Introduction Here is why Sort & Select $\begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{n-1}) \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & & \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-1} \end{bmatrix}$ Multiplication Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule $M_n(\omega) =$ $= \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ & & \vdots & & \\ 1 & \omega^j & \omega^{2j} & \cdots & \omega^{(n-1)j} \\ & & \vdots & & \\ 1 & \omega^{(n-1)} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \xleftarrow{\leftarrow} \omega^{n-1}$ A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial \triangleright interpolation A $n \log n$ time polynomial interpolation A closer look Conclusion Entry (j, k) of M_n is ω^{jk} \square

 a_1

Today, we will learn...

Introduction

Sort & Select

Multiplication

Interger multiplication Interger multiplication Matrix multiplication Matrix multiplication Polynomial multiplication Representing polynomial Polynomial multiplication Polynomial evaluation Horner's Rule A $n \log n$ time polynomial evaluation *n*-th roots of unity *n*-th roots of unity A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial \triangleright interpolation

A closer look

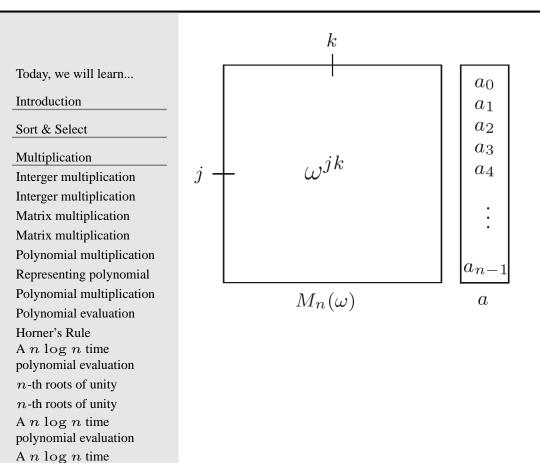
Conclusion

 $\square \quad M_n(\omega) \text{ is invertible, i.e., column } j \text{ and column } k \text{ are orthogonal}$ - proof:

 $\square \quad \text{Inversion formula } M_n(\omega)^{-1} = \frac{1}{n} M_n(\omega^{-1})$

– proof:

A closer look



Conclusion

polynomial evaluation A $n \log n$ time polynomial interpolation A $n \log n$ time polynomial interpolation \triangleright A closer look Today, we will learn ...

Introduction

Sort & Select

Multiplication

 \triangleright Conclusion

Summary

Conclusion

Summary

Today, we will learn ...

Introduction

Sort & Select

Multiplication

Conclusion

▷ Summary

Summary

- Sort and select
 - \triangleright Mergesort and quicksort ¹
 - ▶ Binary search
 - Closest-pair and convex-hull algorithms
- Multiplication
 - Multiplication of large integers from Gauss
 - ▶ Matrix multiplication
 - \triangleright Polynomial multiplication FFT¹ (Also from Gauss)

□ Divide-n-conquer strategy

- Advantages of
 - Make problems easier
 - ▷ Easy parallelization
- Disadvantages of Divide-n-conquer strategy
 - \triangleright Recursion can be slow
 - Subproblems may overlap