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� Given two strings “lqorihten” and “algorithm”, can you tell how
similar these strings are?

� Edit distance is the number of operations (deletions, insertions,
substitutions) that you can convert from one string to the other.

� How do you compute the smallest edit distance between two strings?

– Brute force method? What’s the time complexity?

– Greedy algorithm?

– Dynamic programming
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� Observation: Given two stringsx[1 · · ·n] andy[1 · · ·m]. No matter
how we matchx to y, at the end of the match, we can only have:

–
–
–
– Question: Is it possiblex[n] matches toy[i < m]? ory[m]

matches tox[j < n]?

� Example: EXPONENTIAL vs. POLYNOMIAL

– What are possible endings?

– What are the subproblems we should consider?

– How do we get an optimal answer?
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� Let E(i, j) be the edit distance for the subproblem of strings with
lengthsi andj

� E(i, j) = min{E(i−1, j−1)+diff(x[i], y[j]), E(i−1, j)+1, E(i, j−1)+1}
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� Representing the problem as a DAG
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� Given four matrices,A[50× 20], B[20× 1], C[1× 10], D[10× 100],
we wish to computeA×B × C ×D.

� If we compute(((A×B)× C)×D), we will performx

multiplications?
� What about((A×B)× (C ×D))?
� How do we find the best way to group matrices so that the number of

multiplications is minimized?

– Brute force

– Greedy algorithm

– Dynamic programming
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� Dynamic programming and DAG

1. A pair of parentheses groups two matrices
2. The final matrix represents the root
3. Example:(((A×B)× C)×D) and((A×B)× (C ×D))

� So, our goal is to build an optimal binary tree
� Given four matrices,A[50× 20], B[20× 1], C[1× 10], D[10× 100],

we wish to computeA×B × C ×D.

1. Subproblems with two matrices:
2. Subproblems with three matrices:
3. Subproblems with four matrices:
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� General cases: Give a list of matrices{Ai}, C(i, j) be the minimum
cost ofAi × · · ·Aj , then

C(i, j) = min
i≤k<j

{C(i, k) + C(k + 1, j) + mi−1 ·mk ·mj}

� Example:A[50× 20], B[20× 1], C[1× 10], D[10× 100]

0 j = 1 j = 2 j = 3 j = 4 j = 5
i = 1
i = 2
i = 3
i = 4
i = 5
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� Transitive closure of a graph is a set of vertex pairs of a graph, which can be
connected by one or multiple paths

� We can represent the transitive closure using a matrixA. The elementAi,j is
“1” if there are one or multiple paths between verticesi andj.

� Example:

� Can you design a brute force algorithm? What is its time complexity?
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� Important observation: If there is a path froma to z via s then there must be a
path froma to s and froms to z

� Let Ak be the optimal answer when we only allow the firstk nodes to be
intermediate nodes in paths. We can compute the optimal solution for k + 1
nodesAk+1 efficiently

� What isA0?
� Fork > 0,

A
k+1[i, j] =



1 (Ak[i, j] = 1)

Ak[i, k] and Ak[k, j] (otherwise)
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� Example:
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� Algorithm

Algorithm 0.1: WARSHALL(A[1 · · ·n])

for i← {1 · · ·n}

do

8

<

:

for j ← {1 · · ·n}

do


for k ← {1 · · ·n}

do Ak[i, j]← (Ak−1[i, k] and Ak−1[k, j]) or Ak−1[i, j]

� Time complexity?
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� In this problem we want to find the shortest paths connecting all possible pairs
of vertices of a graph

� Example:

� What is the brute force algorithm and its time complexity?
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� A.k.a. Floyd-Warshall algorithm (or the Roy-Floyd algorithm)
� Robert Floyd (1936-2001)

(Robert Floyd, 1972, from http://sigact.acm.org/floyd/)
� The algorithm is very similar to Warshall’s algorithm
� Basic idea: Let Ak−1 be the optimal answer when we only allow the first

k − 1 nodes to be intermediate nodes in paths. We can compute the optimal
solution fork nodesAk efficiently
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� Example:
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� Algorithm

Algorithm 0.2: FLOYD(A[1 · · ·n])

for i← {1 · · ·n}

do

8

<

:

for j ← {1 · · ·n}

do


for k ← {1 · · ·n}

do Ak[i, j]← min{(Ak−1[i, k] + Ak−1[k, j]), Ak−1[i, j]}

� Time complexity?
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� Problem: Find the shortest path fromA to A by visiting each vertex
exactly once

� Brute force:

� Greedy:

� Dynamic programming:
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� Given a graph withn nodes and starting vertex is 1.
� Algorithm

Algorithm 0.3: FLOYD(A[1 · · ·n])

for s← {2 · · ·n}

do







for all subsetsS ⊂ {1, 2, · · · , n} of sizes and containing1

do
{

for j ∈ S and j 6= 1
do C(S, j) = mini∈S,i6=j{C(S − {j}, i) + dij}

� Time complexity?
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� Now you should understand these (better):

NP-Complete

Travelling Salesman Problem
(from Randall Munroe, creator of xkcd)
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� We have solved the following problems using dynamic programming

– Longest increasing sequence
– Binomial coefficients of(a + b)n (Pascal’s triangle)
– Knapsack problem
– Edit distance
– Matrix multiplication chain (optimal binary tree)
– Transitive closure (Warshall’s algorithm)
– All pairs shortest paths (Floyd’s algorithm)
– TSP

� It is usually more difficult to represent a problem as a set of
sub-problems

� Next couple of weeks: Linear programming.
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