
Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 1

CS483 Analysis of Algorithms
Lecture 08 – Dynamic Programming 02∗

Jyh-Ming Lien

April 02, 2009

∗this lecture note is based onAlgorithmsby S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani andIntro-
duction to the Design and Analysis of Algorithmsby Anany Levitin.



Edit Distance

⊲ Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 2

� Given two strings “lqorihten” and “algorithm”, can you tell how
similar these strings are?

� Edit distance is the number of operations (deletions, insertions,
substitutions) that you can convert from one string to the other.

� How do you compute the smallest edit distance between two strings?

– Brute force method? What’s the time complexity?

– Greedy algorithm?

– Dynamic programming



Edit Distance

Edit Distance

⊲ Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 3

� Observation: Given two stringsx[1 · · ·n] andy[1 · · ·m]. No matter
how we matchx to y, at the end of the match, we can only have:

–
–
–
– Question: Is it possiblex[n] matches toy[i < m]? ory[m]

matches tox[j < n]?

� Example: EXPONENTIAL vs. POLYNOMIAL

– What are possible endings?

– What are the subproblems we should consider?

– How do we get an optimal answer?



Edit Distance

Edit Distance

Edit Distance

⊲ Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 4

� Let E(i, j) be the edit distance for the subproblem of strings with
lengthsi andj

� E(i, j) = min{E(i−1, j−1)+diff(x[i], y[j]), E(i−1, j)+1, E(i, j−1)+1}

� P O L Y N O M I A L
�

E
X
P
O
N
E
N
T
I
A
L



Edit Distance and DAG

Edit Distance

Edit Distance

Edit Distance

⊲ Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 5

� Representing the problem as a DAG



Chain Matrix Multiplication

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG

⊲
Chain Matrix
Multiplication

Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 6

� Given four matrices,A[50× 20], B[20× 1], C[1× 10], D[10× 100],
we wish to computeA×B × C ×D.

� If we compute(((A×B)× C)×D), we will performx

multiplications?
� What about((A×B)× (C ×D))?
� How do we find the best way to group matrices so that the number of

multiplications is minimized?

– Brute force

– Greedy algorithm

– Dynamic programming



Chain Matrix Multiplication

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication

⊲
Chain Matrix
Multiplication

Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 7

� Dynamic programming and DAG

1. A pair of parentheses groups two matrices
2. The final matrix represents the root
3. Example:(((A×B)× C)×D) and((A×B)× (C ×D))

� So, our goal is to build an optimal binary tree
� Given four matrices,A[50× 20], B[20× 1], C[1× 10], D[10× 100],

we wish to computeA×B × C ×D.

1. Subproblems with two matrices:
2. Subproblems with three matrices:
3. Subproblems with four matrices:



Chain Matrix Multiplication

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication

⊲
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 8

� General cases: Give a list of matrices{Ai}, C(i, j) be the minimum
cost ofAi × · · ·Aj , then

C(i, j) = min
i≤k<j

{C(i, k) + C(k + 1, j) + mi−1 ·mk ·mj}

� Example:A[50× 20], B[20× 1], C[1× 10], D[10× 100]

0 j = 1 j = 2 j = 3 j = 4 j = 5
i = 1
i = 2
i = 3
i = 4
i = 5



Transitive closure

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

⊲ Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 9

� Transitive closure of a graph is a set of vertex pairs of a graph, which can be
connected by one or multiple paths

� We can represent the transitive closure using a matrixA. The elementAi,j is
“1” if there are one or multiple paths between verticesi andj.

� Example:

� Can you design a brute force algorithm? What is its time complexity?



Warshall’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

⊲ Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 10

� Important observation: If there is a path froma to z via s then there must be a
path froma to s and froms to z

� Let Ak be the optimal answer when we only allow the firstk nodes to be
intermediate nodes in paths. We can compute the optimal solution for k + 1
nodesAk+1 efficiently

� What isA0?
� Fork > 0,

A
k+1[i, j] =



1 (Ak[i, j] = 1)

Ak[i, k] and Ak[k, j] (otherwise)



Warshall’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

⊲ Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 11

� Example:

via∅ A B C D E

A

B

C

D

E

via A A B C D E

A

B

C

D

E

via B A B C D E

A

B

C

D

E

via C A B C D E

A

B

C

D

E

via D A B C D E

A

B

C

D

E

via E A B C D E

A

B

C

D

E



Warshall’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

⊲ Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 12

� Algorithm

Algorithm 0.1: WARSHALL(A[1 · · ·n])

for i← {1 · · ·n}

do

8

<

:

for j ← {1 · · ·n}

do


for k ← {1 · · ·n}

do Ak[i, j]← (Ak−1[i, k] and Ak−1[k, j]) or Ak−1[i, j]

� Time complexity?



All-pairs Shortest path problem

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm

⊲
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 13

� In this problem we want to find the shortest paths connecting all possible pairs
of vertices of a graph

� Example:

� What is the brute force algorithm and its time complexity?



Floyd’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

⊲ Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 14

� A.k.a. Floyd-Warshall algorithm (or the Roy-Floyd algorithm)
� Robert Floyd (1936-2001)

(Robert Floyd, 1972, from http://sigact.acm.org/floyd/)
� The algorithm is very similar to Warshall’s algorithm
� Basic idea: Let Ak−1 be the optimal answer when we only allow the first

k − 1 nodes to be intermediate nodes in paths. We can compute the optimal
solution fork nodesAk efficiently



Floyd’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

⊲ Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 15

� Example:

via∅ A B C D E

A

B

C

D

E

via A A B C D E

A

B

C

D

E

via B A B C D E

A

B

C

D

E

via C A B C D E

A

B

C

D

E

via D A B C D E

A

B

C

D

E

via E A B C D E

A

B

C

D

E



Floyd’s Algorithm

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

⊲ Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 16

� Algorithm

Algorithm 0.2: FLOYD(A[1 · · ·n])

for i← {1 · · ·n}

do

8

<

:

for j ← {1 · · ·n}

do


for k ← {1 · · ·n}

do Ak[i, j]← min{(Ak−1[i, k] + Ak−1[k, j]), Ak−1[i, j]}

� Time complexity?



Travelling Salesman Problem (TSP)

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm

⊲
Travelling Salesman
Problem (TSP)

Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 17

� Problem: Find the shortest path fromA to A by visiting each vertex
exactly once

� Brute force:

� Greedy:

� Dynamic programming:



Travelling Salesman Problem (TSP)

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)

⊲
Travelling Salesman
Problem (TSP)

Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 18

� Given a graph withn nodes and starting vertex is 1.
� Algorithm

Algorithm 0.3: FLOYD(A[1 · · ·n])

for s← {2 · · ·n}

do







for all subsetsS ⊂ {1, 2, · · · , n} of sizes and containing1

do
{

for j ∈ S and j 6= 1
do C(S, j) = mini∈S,i6=j{C(S − {j}, i) + dij}

� Time complexity?



Conclusion

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

⊲ Conclusion

Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 19

� Now you should understand these (better):

NP-Complete

Travelling Salesman Problem
(from Randall Munroe, creator of xkcd)



Conclusion

Edit Distance

Edit Distance

Edit Distance

Edit Distance and DAG
Chain Matrix
Multiplication
Chain Matrix
Multiplication
Chain Matrix
Multiplication

Transitive closure

Warshall’s Algorithm

Warshall’s Algorithm

Warshall’s Algorithm
All-pairs Shortest path
problem

Floyd’s Algorithm

Floyd’s Algorithm

Floyd’s Algorithm
Travelling Salesman
Problem (TSP)
Travelling Salesman
Problem (TSP)

Conclusion

⊲ Conclusion

Analysis of Algorithms CS483 Lecture 08 – Dynamic Programming 02 trans – 20

� We have solved the following problems using dynamic programming

– Longest increasing sequence
– Binomial coefficients of(a + b)n (Pascal’s triangle)
– Knapsack problem
– Edit distance
– Matrix multiplication chain (optimal binary tree)
– Transitive closure (Warshall’s algorithm)
– All pairs shortest paths (Floyd’s algorithm)
– TSP

� It is usually more difficult to represent a problem as a set of
sub-problems

� Next couple of weeks: Linear programming.


	Edit Distance
	Edit Distance
	Edit Distance
	Edit Distance and DAG
	Chain Matrix Multiplication
	Chain Matrix Multiplication
	Chain Matrix Multiplication
	Transitive closure
	Warshall's Algorithm
	Warshall's Algorithm
	Warshall's Algorithm
	All-pairs Shortest path problem
	Floyd's Algorithm
	Floyd's Algorithm
	Floyd's Algorithm
	Travelling Salesman Problem (TSP)
	Travelling Salesman Problem (TSP)
	Conclusion
	Conclusion

