\qquad .

Show all work clearly and in order. Justify your answers whenever possible; You have 20 minutes to take this 10 point quiz.

1. (4 points) Quicksort $A=[9,29,22,81,31,58,24,35,57,26]$. Use the last element as the pivot. Show steps to earn full points.
2. (4 points) We learned that if we want to multiply two integers A and B, we can represent $A B=\left(a 10^{\frac{n}{2}}+b\right)\left(c 10^{\frac{n}{2}}+d\right)=K_{2} 10^{n}+K_{1} 10^{\frac{n}{2}}+K_{0}$, where $K_{2}=a c, K_{0}=b d, K_{1}=(a+b)(c+$ $d)-\left(K_{0}+K_{2}\right)$. Given $A=9876$ and $B=4321$, show what $a, b, c, d, K_{1}, K_{2}, K_{3}$ are in each recursion.
3. (1 point) Solve this recursion $T(n)=3 T\left(n-\frac{2}{9} n\right)+n^{2}$ using the Master theorem provided on the back of the sheet.
4. (1 point) The strength of RSA encryption is from the fact that solving (a problem) efficiently is intractable.

Master Theorem

- If we have a problem of size n and our algorithm divides the problems into b instances, with a of them needing to be solved. Then we can set up our running time $T(n)$ as: $T(n)=a T(n / b)+f(n)$, where $f(n)$ is the time spent on dividing and merging.
- If $f(n) \in \Theta\left(n^{d}\right)$, with $d \geq 0$, then

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

