
CS583 Lecture 01
Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang’s past lecture notes

Course Info
• course webpage:

- from the syllabus on http://cs.gmu.edu/

- http://cs.gmu.edu/~jmlien/teaching/09_spring_cs583/

• Information you will find

- course syllabus
- time table
- problem sets
- pdf copies of the lectures

- office hours

Prerequisite
• Data structures and algorithms (CS 310)

• Formal methods and models (CS 330)

• Calculus (MATH 113, 114, 213)

• Discrete math (MATH 125)

• Ability to program in a high-level language
that supports recursion

Textbook
• Introduction to Algorithms by

T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein, The McGraw-Hill
Companies, 2nd Edition (2001)

• I also recommend you read the
following book: Algorithms, by
Sanjoy Dasgupta, Christos
Papadimitriou, and Umesh Vazirani,
McGraw-Hill, 2006

Grades
• Quizzes (every week) 30%

• Programming Assignment 10%

• Midterm Exam (March 18) 30%

• Final Exam (May 6) 30%

• Make-up tests will NOT be given for
missed examinations

Other Important Info
• Email

- make sure your gmu mail is activated

- send only from your gmu account; mails
might be filtered if you send from other
accounts

- when you send emails, put [CS583] in
your subject header

OK, lets start

Sorting
• Problem: Sort real numbers in

nondecreasing order

- input:

- output:

• Why do we need to sort?

A sequence of n numbers 〈a1, . . . , an〉

A permutation 〈a′

1, . . . , a
′

n〉 s.t. a
′

1 ≤ a
′

2 ≤ . . . ≤ a
′

n

Sorting

• Selection sort

• Insertion sort

• Library sort

• Shell sort

• Gnome sort

• Bubble sort

• Comb sort

• Binary tree sort

• Topological sort

• Flash sort

• Bucket sort

• Radix sort

• Counting sort

• Pigeonhole sort

• Quicksort

• Heap sort

• Smooth sort

• ... many more

Sorting is important, so
there are many sorting algorithms

Sorting
• What is the easiest (or most naive) way to

do sorting?

- EX: sort 3,1,2,4

- how efficient is your method?

Insertion Sort
• If you ever sorted a deck of cards, you have

done insertion sort

• If you don’t remember, this is how you
sort the cards:

- you sort the card one by one

- assuming the first i cards are sorted, now
“sort” the (i+1)-th card

• EX: 4, K, 6, 1, 3, 7, 9, A, J, 2

Insertion Sort

1: for j ← 2 to n do
2: Temp ← A[j]
3: i← j − 1
4: while i > 0 and A[i] > Temp do
5: A[i + 1]← A[i]
6: i← i− 1
7: end while
8: A[i + 1]← Temp
9: end for

• EX: 4, K, 6, 1, 3, 7, 9, A, J, 2

Analyze Insertion Sort
• Is it correct?

• What are the properties of insertion sort

- stable? in-place? on-line?

• How efficient/slow is insertion sort?

Merge Sort
• how to sort one number quickly?

• how to sort two numbers quickly?

• how to sort three numbers quickly?

• can you generalize this to n numbers?

Merge Sort

1: if p < r then
2: q ← (p + r)/2
3: Mergesort(A, p, q)
4: Mergesort(A, q + 1, r)
5: Merge(A, p, q, r)
6: end if

• EX: 4, K, 6, 1, 3, 7, 9, A, J, 2

Analyze Merge Sort
• Is it correct?

• What are the properties of merge sort

- stable? in-place? on-line?

• How efficient/slow is merge sort?

Insertion vs. Merge sort
• Which algorithm would you prefer and

why?

• Which one is faster? by how much?

• Which one requires more space? by how
much?

Shortest Paths
• Given a graph, find the shortest path in the

graph connecting the start and goal
vertices.

• What is a graph?

• How do you represent the graph?

• How do you formalize the problem?

• How do you solve the problem?

Shortest Paths
• What is the most naive way to solve the

shortest path problem?

- EX: a graph with only 4 nodes

- How much time does your method take?

- Can we do better?

- How do we know our method is
optimal? (i.e., no other methods can be
more efficient.)

Shortest Paths
• Given a graph, find the shortest path in the

graph that visits each vertex exactly once.

- How do you formalize the problem?

- How do you solve the problem?

- How much time does your method take?

- Can we do better?

Hard Problems
• We are able to solve many problems, but

there are many other problems that we
cannot solve efficiently

- we can solve the shortest path between
two vertices efficiently

- but we cannot efficiently solve the
shortest path problem that requires that
path to visit each vertex exactly once

Course Topics
• Jan 28:
Algorithm Analysis (growth of functions, recurrence, randomized analysis)

• Feb 04:
Sorting & Order Statistics

• Feb 11:
Dynamic Programming

• Feb 18:
Greedy Algorithms

• Feb 25:
Graph Algorithms (basic graph search, topological sort, ...)

• Mar 04:Minimum Spanning Tree

• Mar 25:Single-Source Shortest Paths

• Apr 01:
All-Pairs Shortest Paths

• Apr 08:
Maximum Flow

• Apr 15:
Linear Programming

• Apr 22:
NP completeness

• See details and updates on the course webpage

Warning
• Please don’t take this class if you

- You do not have the mathematics or CS prerequisites

- You are not able to make arrangements to come to
GMU to take the exams on-site

- You are working full-time and taking another graduate
level computer science class

- You are not able to spend a minimum of 9~12 hours a
week outside of class reading the material and doing
practice problem sets

Suggestions
• Don’t fall behind - maintain a steady effort

• Take the homework (quizzes, practice
problems) seriously - these are the only ways to
exercise for the exams

• Make use of office hours - we are here to help,
but it will be more helpful if you can think about the
questions in advance

• Read the materials before the class and ask
during the class- this prepares you for the quizzes

• Form study groups - things become easier if
there is joint force

