CS583 Lecture 01

Jyh-Ming Lien

Course Info

- course webpage:
- from the syllabus on http://cs.gmu.edu/
- http://cs.gmu.edu/~jmlien/teaching/09_spring_cs583/
- Information you will find
- course syllabus
- time table
- problem sets
- pdf copies of the lectures
- office hours

Prerequisite

- Data structures and algorithms (CS 310)
- Formal methods and models (CS 330)
- Calculus (MATH 113, 114, 213)
- Discrete math (MATH 125)
- Ability to program in a high-level language that supports recursion

Textbook

- Introduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, The McGraw-Hill Companies, 2nd Edition (200I)

- I also recommend you read the following book: Algorithms, by Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani, McGraw-Hill, 2006

Grades

- Quizzes (every week) 30\%
- Programming Assignment 10\%
- Midterm Exam (March I8) 30\%
- Final Exam (May 6) 30\%
- Make-up tests will NOT be given for missed examinations

Other Important Info

- Email
- make sure your gmu mail is activated
- send only from your gmu account; mails might be filtered if you send from other accounts
- when you send emails, put [CS583] in your subject header

OK, lets start

Sorting

- Problem: Sort real numbers in nondecreasing order
- input: A sequence of n numbers $\left\langle a_{1}, \ldots, a_{n}\right\rangle$
- output:

A permutation $\left\langle a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ s.t. $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}$

- Why do we need to sort?

Sorting

Sorting is important, so there are many sorting algorithms

- Selection sort
- Insertion sort
- Library sort
- Shell sort
- Gnome sort
- Bubble sort
- Comb sort
- Binary tree sort
- Topological sort
- Flash sort
- Bucket sort
- Radix sort
- Counting sort
- Pigeonhole sort
- Quicksort
- Heap sort
- Smooth sort
- ... many more

Sorting

- What is the easiest (or most naive) way to do sorting?
- EX: sort 3, 1,2,4
- how efficient is your method?

Insertion Sort

- If you ever sorted a deck of cards, you have done insertion sort
- If you don't remember, this is how you sort the cards:
- you sort the card one by one
- assuming the first i cards are sorted, now "sort" the $(i+1)$-th card
- EX:4, K, 6, I, 3, 7, 9, A, J, 2

Insertion Sort

```
1: for \(j \leftarrow 2\) to \(n\) do
2: \(\quad\) Temp \(\leftarrow A[j]\)
3: \(\quad i \leftarrow j-1\)
4: \(\quad\) while \(i>0\) and \(A[i]>\) Temp do
5: \(\quad A[i+1] \leftarrow A[i]\)
6: \(\quad i \leftarrow i-1\)
7: end while
8: \(\quad A[i+1] \leftarrow\) Temp
9: end for
```

- EX: 4, K, 6, I, 3, 7, 9, A, J, 2

Analyze Insertion Sort

- Is it correct?
- What are the properties of insertion sort
- stable? in-place? on-line?
- How efficient/slow is insertion sort?

Merge Sort

- how to sort one number quickly?
- how to sort two numbers quickly?
- how to sort three numbers quickly?
- can you generalize this to n numbers?

Merge Sort

1: if $p<r$ then
2: $\quad q \leftarrow(p+r) / 2$
3: $\quad \operatorname{Mergesort}(A, p, q)$
4: $\quad \operatorname{Mergesort}(A, q+1, r)$
5: $\quad \operatorname{Merge}(A, p, q, r)$
6: end if

- EX: 4, K, 6, I, 3, 7, 9, A, J, 2

Analyze Merge Sort

- Is it correct?
- What are the properties of merge sort
- stable? in-place? on-line?
- How efficient/slow is merge sort?

Insertion vs. Merge sort

- Which algorithm would you prefer and why?
- Which one is faster? by how much?
- Which one requires more space? by how much?

Shortest Paths

- Given a graph, find the shortest path in the graph connecting the start and goal vertices.
- What is a graph?
- How do you represent the graph?
- How do you formalize the problem?
- How do you solve the problem?

Shortest Paths

- What is the most naive way to solve the shortest path problem?
- EX: a graph with only 4 nodes
- How much time does your method take?
- Can we do better?
- How do we know our method is optimal? (i.e., no other methods can be more efficient.)

Shortest Paths

- Given a graph, find the shortest path in the graph that visits each vertex exactly once.
- How do you formalize the problem?
- How do you solve the problem?
- How much time does your method take?
- Can we do better?

Hard Problems

- We are able to solve many problems, but there are many other problems that we cannot solve efficiently
- we can solve the shortest path between two vertices efficiently
- but we cannot efficiently solve the shortest path problem that requires that path to visit each vertex exactly once

Course Topics

- Jan 28: Algorithm Analysis (growth of functions, recurrence, randomized analysis)
- Feb 04: Sorting \& Order Statistics
- Feb II: Dynamic Programming
- Feb I8: Greedy Algorithms
- Feb 25: Graph Algorithms (basic graph search, topological sort, ...)
- Mar 04:Minimum Spanning Tree
- Mar 25:Single-Source Shortest Paths
- Apr 01:All-Pairs Shortest Paths
- Apr 08:Maximum Flow
- Apr 15:Linear Programming
- Apr 22:NP completeness
- See details and updates on the course webpage

Warning

- Please don't take this class if you
- You do not have the mathematics or CS prerequisites
- You are not able to make arrangements to come to GMU to take the exams on-site
- You are working full-time and taking another graduate level computer science class
- You are not able to spend a minimum of 9~12 hours a week outside of class reading the material and doing practice problem sets

Suggestions

- Don't fall behind - maintain a steady effort
- Take the homework (quizzes, practice problems) seriously - these are the only ways to exercise for the exams
- Make use of office hours - we are here to help, but it will be more helpful if you can think about the questions in advance
- Read the materials before the class and ask during the class- this prepares you for the quizzes
- Form study groups - things become easier if there is joint force

