CS583 Lecture O

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof.Wang’s past lecture notes

Course Info

® course webpage:

- from the syllabus on http://cs.gmu.edu/
- http://cs.gmu.edu/~jmlien/teaching/09_spring_cs583/

® Information you will find

- course syllabus

- time table

- problem sets

- pdf copies of the lectures
- office hours

Prerequisite

® Data structures and algorithms (CS 310)
® Formal methods and models (CS 330)
® Calculus (MATH 113, 114, 213)

® Discrete math (MATH 125)

® Ability to program in a high-level language
that supports recursion

Textbook

ALGORITHMS

Introduction to Algorithms by gy
T.H. Cormen, C. E. Leiserson, R. L. T
Rivest, and C. Stein, The McGraw-Hill q
Companies, 2nd Edition (2001) S \‘

| also recommend you read the
following book: Algorithms, by
Sanjoy Dasgupta, Christos
Papadimitriou, and Umesh Vazirani,
McGraw-Hill, 2006

Grades

Quizzes (every week) 30%

Programming Assignment 10%

Midterm Exam (March 18) 30%
Final Exam (May 6) 30%

Make-up tests will NOT be given for
missed examinations

Other Important Info

¢ Email
- make sure your gmu mail is activated

- send only from your gmu account; mails
might be filtered if you send from other
accounts

- when you send emails, put [CS583] in
your subject header

OK, lets start

Sorting

® Problem: Sort real numbers in
nondecreasing order

= input: A sequence of n numbers (aj,...,a,)
- output:
A permutation (aj,...,a,) st. a; <ay, <...<a,

® Why do we need to sort!?

n

Sorting

Sorting is important, so
there are many sorting algorithms

Selection sort
Insertion sort
Library sort
Shell sort
Gnome sort
Bubble sort
Comb sort
Binary tree sort
Topological sort

Flash sort
Bucket sort
Radix sort
Counting sort
Pigeonhole sort
Quicksort
Heap sort
Smooth sort

... many more

Sorting

® What is the easiest (or most naive) way to
do sorting!?

- EX:sort 3,1,2,4

- how efficient is your method?

Insertion Sort

. ® |[fyou ever sorted a deck of cards, you have
3%53 | . .
“\' @ done insertion sort

® |f you don’t remember, this is how you
sort the cards:

- Yyou sort the card one by one

- assuming the first i cards are sorted, now
“sort” the (i+/)-th card

o EX:4,K 6,1,3,7,9,A,],2

Insertion Sort

1: for j «— 2 ton do
2: Temp «— Alj]

3 1— 7 —1

4: while i > 0 and Ali] > Temp do
5: Alt + 1] « Ali]

6: 1«—1— 1

7: end while

8: At + 1] « Temp

9: end for

e EX:4,K,6,1,3,7,9,A,],2

Analyze Insertion Sort

® |s it correct!
® VWhat are the properties of insertion sort
- stable? in-place? on-line!?

® How efficient/slow is insertion sort!?

Merge Sort

how to sort one number quickly?
how to sort two numbers quickly?
how to sort three numbers quickly?

can you generalize this to n numbers?

Merge Sort

if p < r then

1:
22 g (p+r)/2

3: Mergesort(A,p, q)

4: Mergesort(A,q+ 1,7)
5. Merge(A,p,q,r)

6: end if

e EX:4,K,6,1,3,7,9,A,],2

Analyze Merge Sort

® |s it correct!
® VWhat are the properties of merge sort
- stable? in-place? on-line!?

® How efficient/slow is merge sort!

Insertion vs. Merge sort

® Which algorithm would you prefer and
why?

® Which one is faster! by how much?

® Which one requires more space! by how
much?

Shortest Paths

Given a graph, find the shortest path in the
graph connecting the start and goal
vertices.

What is a graph!?
How do you represent the graph!?
How do you formalize the problem!?

How do you solve the problem!?

Shortest Paths

® What is the most naive way to solve the

shortest pat

EX:a grap

n problem!?

n with only 4 nodes

How muc

n time does your method take!?

Can we do better?

How do we know our method is
optimal? (i.e., no other methods can be

more effic

ient.)

Shortest Paths

® Given a graph, find the shortest path in the
graph that visits each vertex exactly once.

- How do you formalize the problem?

- How do you solve the problem?

- How much time does your method take?

= Can we do better?

Hard Problems

® Ve are able to solve many problems, but

there are many other problems that we
cannot solve efficiently

- we can solve the shortest path between
two vertices efficiently

- but we cannot efficiently solve the
shortest path problem that requires that
path to visit each vertex exactly once

Course Topics

Jan 28: Algorithm Analysis (growth of functions, recurrence, randomized analysis)
Feb 04: Sorting & Order Statistics

Feb | I: Dynamic Programming

Feb 18: Greedy Algorithms

Feb 25: Graph Algorithms (basic graph search, topological sort, ...)

Mar 04:Minimum Spanning Tree

Mar 25:Single-Source Shortest Paths

Apr 01:All-Pairs Shortest Paths

Apr 08:Maximum Flow

Apr |5:Linear Programming

Apr 22:NP completeness

See details and updates on the course webpage

WWarning

® Please don’t take this class if you
- You do not have the mathematics or CS prerequisites

- You are not able to make arrangements to come to
GMU to take the exams on-site

- You are working full-time and taking another graduate
level computer science class

- You are not able to spend a minimum of 9~12 hours a
week outside of class reading the material and doing
practice problem sets

Suggestions

Don’t fall behind - maintain a steady effort

Take the homework (quizzes, practice
problems) seriously - these are the only ways to
exercise for the exams

Make use of office hours - we are here to help,
but it will be more helpful if you can think about the
questions in advance

Read the materials before the class and ask
during the class- this prepares you for the quizzes

Form study groups - things become easier if
there is joint force

