
CS583 Lecture 02
Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang’s past lecture notes

Theoretical analysis
• Normally is written as a function, ex:

• But, there are problems in this
representation, namely

- machine dependent

-

-

T (n) = anb + · · · + cn + d

Order of Growth
• Theoretical analysis focuses on ``order of

growth'' of an algorithm

• Some common order of growth

Given that T (n) = n(n−1)
2 , How much time an algorithm will take if the

input size n doubled?

n, n2, n3, nd, log n, log∗ n, log log n, n log n, n!, 2n, 3n, nn,
√

n

Asymptotic Notation
• Big

• upper, lower, tight bound (when input is
sufficiently large and remain true when
input is infinitely large)

• defines a set of similar functions

O,Ω.Θ

Asymptotic Notation
• Asymptotic notation has been developed to provide a tool for studying

order of growth

– O(g(n)): a set of functions with the same or smaller order of growth as g(n)

∗ 2n2 − 5n + 1 ∈ O(n2)

∗ 2n + n100 − 2 ∈ O(n!)

∗ 2n + 6 $∈ O(log n)

– Ω(g(n)): a set of functions with the same or larger order of growth as g(n)

∗ 2n2 − 5n + 1 ∈ Ω(n2)

∗ 2n + n100 − 2 $∈ Ω(n!)

∗ 2n + 6 ∈ Ω(log n)

– Θ(g(n)): a set of functions with the same order of growth as g(n)

∗ 2n2 − 5n + 1 ∈ Θ(n2)

∗ 2n + n100 − 2 $∈ Θ(n!)

∗ 2n + 6 $∈ Θ(log n)

Big O
• Definition: f(n) is in O(g(n)) if “order of growth of f(n)” ≤ “order of

growth of g(n)” (within constant multiple)

– there exist positive constant c and non-negative integer n0 such that
f(n) ≤ cg(n) for every n ≥ n0

• Examples:

– 10n ∈ O(n2)
∗ why?

– 5n + 20 ∈ O(n)
∗ why?

– 2n + 6 %∈ O(log n)
∗ why?

Big Ω
• Definition: f(n) is in O(g(n)) if “order of growth of f(n)” ≤ “order of

growth of g(n)” (within constant multiple)

– there exist positive constant c and non-negative integer n0 such that
f(n) ≤ cg(n) for every n ≥ n0

• Examples:

– 10n ∈ O(n2)
∗ why?

– 5n + 20 ∈ O(n)
∗ why?

– 2n + 6 %∈ O(log n)
∗ why?

Big Θ
• Definition: f(n) is in Θ(g(n)) if f(n) is bounded above and below by

g(n) (within constant multiple)

– there exist positive constant c1 and c2 and non-negative integer n0

such that c1g(n) ≤ f(n) ≤ c2g(n) for every n ≥ n0

• Examples:

– 1
2n(n− 1) ∈ Θ(n2)
∗ why?

– 2n− 51 ∈ Θ(n)
∗ why?

Comparing OOG
• Verify the notation by compare the order

of growth (oog)

• useful tools for computing limits

lim
n→∞

f(n)
g(n)

=






0 t(n) has a smaller order of growth than g(n)
c > 0 t(n) has the same order of growth as g(n)
∞ t(n) has a larger order of growth than g(n)

• L’Hôpital’s rule

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

• Stirling’s formula
n! ≈

√
2πn

(n

e

)n

Bounding Functions
• non-recursive algorithms

- set up a sum for the number of
times the basic operation is
executed

- simplify the sum and determine
the order of growth (using
asymptotic notation)

1.
n∑

1=1

1 = 1 + 1 + · · · + 1 = n ∈ Θ(n)

2.
n∑

1=1

i = 1 + 2 + · · · + n =
n(n + 1)

2
≈ n2

2
∈ Θ(n2)

3.
n∑

1=1

i2 = 1 + 4 + · · · + n2 =
n(n + 1)(2n + 1)

6
≈ n3

3
∈ Θ(n3)

4.
n∑

1=0

ai = 1 + a1 + · · · + an =
an+1 − 1

a− 1
,∀a %= 1,∈ Θ(an)

5.
∑

ai + bi =
∑

ai +
∑

bi

6.
∑

cai = c
∑

ai

7.
n∑

1=0

ai =
m∑

1=0

ai +
n∑

1=m+1

ai

Asymptotic Notation
• why do we need asymptotic notation?

- to make our life harder and more
complicated?

Bounding Recursions
• What is a Recurrence

- A recurrence is an equation of inequality that describes
a function in terms of its value on smaller inputs

- Recurrences have boundary conditions

• Techniques for Bounding Recurrences

- Expansion

- Recursion-tree

- Substitution

- Master Theorem

T (n) = 2T (n/2) + n

Expansion
• Examples

T (n) = 2T (n/2) + cn

T (n) = T (n− 1) + n

Substitution
• make a guess and prove it right

• guess that
T (n) = 2T (n

2) + n ∈ O(n + n · lgn), where T (1) = 1.

Substitution
• we can also guess that

T (n) = 2T (n
2) + n ∈ O(n), where T (1) = 1.

Recursion Tree
• Recursion tree is good for make an initial

guess of the bound

• Build a recursion tree for
T (n) = 2T (n/2) + cn

Recursion Tree
• Build a recursion tree for

T (n) = T (n/4) + T (n/2) + n2

Master Theorem
• If

• examples

T (n) =






Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

T (n) = aT (n/b) + Θ(nd)

1. T (n) = 4T (n/2) + n⇒ T (n) =

2. T (n) = 4T (n/2) + n2 ⇒ T (n) =

3. T (n) = 4T (n/2) + n3 ⇒ T (n) =

Master Theorem

• Don’t use the master theorem when

-

-

T (n) = aT (n/b) + Θ(nd)

Probabilistic Analysis
• use of probability theory in the analysis of

algorithms

• To perform a probabilistic analysis, we have
to make assumptions on the
distribution of inputs

• After such assumption, we compute an
expected running time that is
computed over the distribution of all
possible inputs

Randomized Alg
• some examples of randomized algorithm

-

-

Insertion Sort
• Worst case

• Best case

• Average case?

- not (worst+best)/2

- assume: every permutation is equally likely
(how many permutations in total?)

‣ important consequence

‣

- We show that T (n) = Θ(n2)

Average Case
• Let random variable k be the number of moves to the right during the

intersection sort

• Let random variable ki be the number of moves to the right when insert
A[1] into A[1], ..., A[i− 1]

• Then, E[k] =
i=n∑

i=1

E[ki]

what is E[k_i]?

Average Case

Summary
• know what asymptotic notation is

• know how to bound algorithms with and
without recursion

• know how to analyze the average case

