CS583 Lecture 02

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof.Wang’s past lecture notes




Theoretical analysis

® Normally is written as a function, ex:
T(n)=an®+---+cn+d

® But, there are problems in this
representation, namely

- machine dependent




Order of Growth

® Theoretical analysis focuses on " "order of
growth" of an algorithm

Given that T'(n) = @, How much time an algorithm will take if the
input size n doubled?

® Some common order of growth

n,n?,n3,n logn,log* n,loglogn,nlogn,n!, 2", 3" n", /n




Asymptotic Notation
e Big ), (1.0

® upper, lower, tight bound (when input is
sufficiently large and remain true when
input is infinitely large)

® defines a set of similar functions




Asymptotic Notation

e Asymptotic notation has been developed to provide a tool for studying
order of growth

— O(g(n)): a set of functions with the same or smaller order of growth as g(n)
x* 2n? —5n+1 € O(n?)
x 2" +nl%0 —2 € O(n!)
*x 2n+ 6 ¢ O(logn)
— Q(g(n)): a set of functions with the same or larger order of growth as g(n)
x 2n2 —5n+ 1€ Q(n?)
x 27 4+ nl00 2 & Q(n!)
x 2n+ 6 € Q(logn)
— O(g(n)): a set of functions with the same order of growth as g(n)
x 2n% —5n+ 1 € O(n?)
x 27 +nl00 2 ZO(n!)
x 2n+ 6 & O(logn)




Big O

e Definition: f(n) is in O(g(n)) if “order of growth of f(n)” < “order of
growth of g(n)” (within constant multiple)

— there exist positive constant ¢ and non-negative integer ng such that
f(n) < cg(n) for every n > ng

e Examples:
— 10n € O(n?)
x why?
— 5n+20 € O(n)
*x why?
— 2n+6 ¢ O(logn)
*x why?




Big (2

e Definition: f(n) is in O(g(n)) if “order of growth of f(n)” < “order of
growth of g(n)” (within constant multiple)

— there exist positive constant ¢ and non-negative integer ng such that
f(n) < cg(n) for every n > ng

e Examples:
— 10n € O(n?)
x why?
— 5n+20 € O(n)
*x why?
— 2n 46 ¢ O(logn)
x why?




Big ©

e Definition: f(n) is in O(g(n)) if f(n) is bounded above and below by
g(n) (within constant multiple)

— there exist positive constant c; and ¢y and non-negative integer ny
such that c1g(n) < f(n) < cag(n) for every n > ng

e Examples:
n(n —1) € ©(n?)
*x why?
— 2n — 51 € O(n)
*x why?

1
2




Comparing OOG

® Verify the notation by compare the order
of growth (oog)

f(n) 0 t(n) has a smaller order of growth than g(n)
lim ——= =< ¢>0 t(n) has the same order of growth as g(n)
n=o0 g(n) 00 t(n) has a larger order of growth than g(n)

® useful tools for computing limits

e [’Hopital’s rule
/

lim _f(n) = lim f/(n)

n—oo g(n)  n—oo g'(n)

e Stirling’s formula
n

n! ~V2rn (—)
e




Bounding Functions

® non-recursive algorithms 2 1-t+i+ri=ncom

. +1 2
- setup a sum for the number of 2 Y i=1+2+ - 4n=""F0 T cou
times the basic operation is -
n 3
executed N - TR R 1)6(2n+ D " o)
1=1
- simplify the sum and determine - 1
the order of growth (using 4. ) a'=1+a'+ t+a"=———Va#1,€0(a")
asymptotic notation) -
6 ani = cZaz




Asymptotic Notation

® why do we need asymptotic notation!?

- to make our life harder and more
complicated!?




Bounding Recursions

® VWhat is a Recurrence

- A recurrence is an equation of inequality that describes
a function in terms of its value on smaller inputs

- Recurrences have boundary conditions

T(n)=2T(n/2)+n
® Techniques for Bounding Recurrences

- Expansion

- Recursion-tree
- Substitution

- Master Theorem




Expansion

® Examples
T(n) =2T(n/2)+ cn
Tn)=Tn—1)+n




Substitution

® make a guess and prove it right

® guess that
T'(n)=2T(5) +ne€Om+n-lgn), where T'(1) = 1.




Substitution

® we can also guess that
T'(n) =2T(%)+n < O(n), where T'(1) = 1.




Recursion Tree

® Recursion tree is good for make an initial
guess of the bound

® Build a recursion tree for
T(n)=2T(n/2)+ cn




Recursion Tree

® Build a recursion tree for
T(n) =T(n/4) +T(n/2) + n?




Master Theorem
® If T(n)=al(n/b)+ O(n)

[ O(n?) if a < b
T(n)=1<{ O(n%logn) if a= b
O(nlogsa)  if g > b4

\
® examples
1. T(n) =4T(n/2) +n = T(n) =

2. T(n) =4T(n/2) + n? = T(n) =

3. T(n) =4T(n/2) +n° = T(n) =




Master [ heorem

T(n) = al(n/b) + O(n?)
® Don’t use the master theorem when




Probabilistic Analysis

® use of probability theory in the analysis of
algorithms

® To perform a probabilistic analysis, we have
to make assumptions on the
distribution of inputs

® After such assumption, we compute an
expected running time that is
computed over the distribution of all
possible inputs




Randomized Alg

® some examples of randomized algorithm




Insertion Sort

® Worst case
® Best case
® Average case!
- not (worstt+best)/2

- assume: every permutation is equally likely
(how many permutations in total?)

» important consequence

>
- We show that T'(n) = O(n?)




Average Case

e Let random variable £ be the number of moves to the right during the
intersection sort

e Let random variable k; be the number of moves to the right when insert

A[1] into A[1], ..., Ali — 1]

e Then, E[k] = %E[lﬁ]

what is E[k_i]?




Average Case




Summary

® know what asymptotic notation is

® know how to bound algorithms with and
without recursion

® know how to analyze the average case




