CS583 Lecture 02

Jyh-Ming Lien

Theoretical analysis

- Normally is written as a function, ex:

$$
T(n)=a n^{b}+\cdots+c n+d
$$

- But, there are problems in this representation, namely
- machine dependent

Order of Growth

- Theoretical analysis focuses on "order of growth" of an algorithm

Given that $T(n)=\frac{n(n-1)}{2}$, How much time an algorithm will take if the input size n doubled?

- Some common order of growth $n, n^{2}, n^{3}, n^{d}, \log n, \log ^{*} n, \log \log n, n \log n, n!, 2^{n}, 3^{n}, n^{n}, \sqrt{n}$

Asymptotic Notation

- $\operatorname{Big} O, \Omega . \Theta$
- upper, lower, tight bound (when input is sufficiently large and remain true when input is infinitely large)
- defines a set of similar functions

Asymptotic Notation

- Asymptotic notation has been developed to provide a tool for studying order of growth
- $O(g(n))$: a set of functions with the same or smaller order of growth as $g(n)$
* $2 n^{2}-5 n+1 \in O\left(n^{2}\right)$
* $2^{n}+n^{100}-2 \in O(n!)$
* $2 n+6 \notin O(\log n)$
- $\Omega(g(n))$: a set of functions with the same or larger order of growth as $g(n)$
* $2 n^{2}-5 n+1 \in \Omega\left(n^{2}\right)$
* $2^{n}+n^{100}-2 \notin \Omega(n!)$
* $2 n+6 \in \Omega(\log n)$
- $\Theta(g(n)):$ a set of functions with the same order of growth as $g(n)$
* $2 n^{2}-5 n+1 \in \Theta\left(n^{2}\right)$
* $2^{n}+n^{100}-2 \notin \Theta(n!)$
* $2 n+6 \notin \Theta(\log n)$

Big O

- Definition: $f(n)$ is in $O(g(n))$ if "order of growth of $f(n)$ " \leq "order of growth of $g(n) "$ (within constant multiple)
- there exist positive constant c and non-negative integer n_{0} such that $f(n) \leq c g(n)$ for every $n \geq n_{0}$
- Examples:
$-10 n \in O\left(n^{2}\right)$
* why?
$-5 n+20 \in O(n)$
* why?
$-2 n+6 \notin O(\log n)$
* why?

$\mathrm{Big} \Omega$

- Definition: $f(n)$ is in $O(g(n))$ if "order of growth of $f(n)$ " \leq "order of growth of $g(n)$ " (within constant multiple)
- there exist positive constant c and non-negative integer n_{0} such that $f(n) \leq c g(n)$ for every $n \geq n_{0}$
- Examples:
$-10 n \in O\left(n^{2}\right)$
* why?
$-5 n+20 \in O(n)$
* why?
$-2 n+6 \notin O(\log n)$
* why?

Big Θ

- Definition: $f(n)$ is in $\Theta(g(n))$ if $f(n)$ is bounded above and below by $g(n)$ (within constant multiple)
- there exist positive constant c_{1} and c_{2} and non-negative integer n_{0} such that $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for every $n \geq n_{0}$
- Examples:

$$
\begin{gathered}
-\frac{1}{2} n(n-1) \in \Theta\left(n^{2}\right) \\
* \text { why? } \\
-2 n-51 \in \Theta(n) \\
* \text { why? }
\end{gathered}
$$

Qonnorino

- Verify the notation by compare the order of growth (oog)

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}= \begin{cases}0 & t(n) \text { has a smaller order of growth than } g(n) \\ c>0 & t(n) \text { has the same order of growth as } g(n) \\ \infty & t(n) \text { has a larger order of growth than } g(n)\end{cases}
$$

- useful tools for computing limits
- L'Hôpital's rule

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

- Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Bounding Functions

- non-recursive algorithms
- set up a sum for the number of times the basic operation is executed
- simplify the sum and determine the order of growth (using asymptotic notation)

1. $\sum_{1=1}^{n} 1=1+1+\cdots+1=n \in \Theta(n)$
2. $\sum_{1=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2} \approx \frac{n^{2}}{2} \in \Theta\left(n^{2}\right)$
3. $\sum_{1=1}^{n} i^{2}=1+4+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \approx \frac{n^{3}}{3} \in \Theta\left(n^{3}\right)$
4. $\sum_{1=0}^{n} a^{i}=1+a^{1}+\cdots+a^{n}=\frac{a^{n+1}-1}{a-1}, \forall a \neq 1, \in \Theta\left(a^{n}\right)$
5. $\sum a_{i}+b_{i}=\sum a_{i}+\sum b_{i}$
6. $\sum c a_{i}=c \sum a_{i}$
7. $\sum_{1=0}^{n} a_{i}=\sum_{1=0}^{m} a_{i}+\sum_{1=m+1}^{n} a_{i}$

Asymptotic Notation

- why do we need asymptotic notation?
- to make our life harder and more complicated?

Bounding Recursions

- What is a Recurrence
- A recurrence is an equation of inequality that describes a function in terms of its value on smaller inputs
- Recurrences have boundary conditions

$$
T(n)=2 T(n / 2)+n
$$

- Techniques for Bounding Recurrences
- Expansion
- Recursion-tree
- Substitution
- Master Theorem

Expansion

- Examples

$$
\begin{aligned}
& T(n)=2 T(n / 2)+c n \\
& T(n)=T(n-1)+n
\end{aligned}
$$

Substitution

- make a guess and prove it right
- guess that

$$
T(n)=2 T\left(\frac{n}{2}\right)+n \in O(n+n \cdot \lg n), \text { where } T(1)=1 .
$$

Substitution

- we can also guess that
$T(n)=2 T\left(\frac{n}{2}\right)+n \in O(n)$, where $T(1)=1$.

Recursion Tree

- Recursion tree is good for make an initial guess of the bound
- Build a recursion tree for

$$
T(n)=2 T(n / 2)+c n
$$

Recursion Tree

- Build a recursion tree for

$$
T(n)=T(n / 4)+T(n / 2)+n^{2}
$$

Master Theorem

- If $T(n)=a T(n / b)+\Theta\left(n^{d}\right)$

$$
T(n)= \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

- examples

1. $T(n)=4 T(n / 2)+n \Rightarrow T(n)=$
2. $T(n)=4 T(n / 2)+n^{2} \Rightarrow T(n)=$
3. $T(n)=4 T(n / 2)+n^{3} \Rightarrow T(n)=$

Master Theorem

$$
T(n)=a T(n / b)+\Theta\left(n^{d}\right)
$$

- Don't use the master theorem when

Probabilistic Analysis

- use of probability theory in the analysis of algorithms
- To perform a probabilistic analysis, we have to make assumptions on the distribution of inputs
- After such assumption, we compute an expected running time that is computed over the distribution of all possible inputs

Randomized Alg

- some examples of randomized algorithm -

Insertion Sort

- Worst case
- Best case
- Average case?
- not (worst+best)/2
- assume: every permutation is equally likely (how many permutations in total?)
- important consequence
- We show that $T(n)=\Theta\left(n^{2}\right)$

Average Case

- Let random variable k be the number of moves to the right during the intersection sort
- Let random variable k_{i} be the number of moves to the right when insert $A[1]$ into $A[1], \ldots, A[i-1]$
- Then, $E[k]=\sum_{i=1}^{i=n} E\left[k_{i}\right]$
what is $E\left[k_{i}\right]$?

Average Case

Summary

- know what asymptotic notation is
- know how to bound algorithms with and without recursion
- know how to analyze the average case

