CS583 Lecture 04 Dynamic Programming

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang's past lecture notes

□ A term coined by Richard Bellman in the 1940s

(Image from ieee.org. Richard Bellman, 1920 - 1984)

- Some problems solved by dynamic programming
 - Longest increasing subsequences
 - Fibonacci number
 - Knapsack problem
 - All-pairs shortest path problem (Floyd's algorithm)
 - Optimal binary search tree problem
 - Multiplying a sequence of matrices
 - String matching (or DNA sequence matching), where we search for the string closest to the pattern
 - Convex decomposition of polygons

- ...

- what kind of problems can be solved using dynamic programming?
 - optimization problems
 - the optimal solution can be obtained from the optimal solutions of the subproblems
 - overlapping subproblems (i.e., the same subproblem may appear many times)

- How to solve dynamic programming problems?
 - define what your "sub-problem"
 - solve the sub-problems recursively
 - store solutions to the sub-problems (and use them later)

• matrix chain multiplication

compute $A_1 \times A_2 \times A_3 \times A_4$

LCS

Longest common sequence (LCS)

Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both

• example:
$$X = [A, B, C, B, D, A, B]$$

 $Y = [B, D, C, A, D, A]$

Brute force time complexity?

LCS

- Dynamic programming
 - sub-problem c[i,j] = |LCS(x[1...i], y[1...j])|
 - define (and solve) recursively

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j] \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise} \end{cases}$$

LCS

	1	2	3	4	5	6	7
1							
2							
3							
4							
5							
6							

- Given four matrices, $A[50 \times 20]$, $B[20 \times 1]$, $C[1 \times 10]$, $D[10 \times 100]$, we wish to compute $A \times B \times C \times D$.
- □ If we compute $(((A \times B) \times C) \times D)$, we will perform x multiplications?
- \square What about $((A \times B) \times (C \times D))$?
- ☐ How do we find the best way to group matrices so that the number of multiplications is minimized?

- a pair of parentheses group two matrices
- The final matrix represents the root
- Ex: (((AB)C)D) and ((AB)(CD))

• Example: $A[50 \times 20], B[20 \times 1], C[1 \times 10], D[10 \times 100]$ compute $A \times B \times C \times D$

- subproblems
 - with two matrices
 - with three matrices
 - with four matrices

- Sub-problem
 - cost of multiplying matrix i to j

$$C(i,j) = \min_{i \le k < j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

• example: $A[50 \times 20], B[20 \times 1], C[1 \times 10], D[10 \times 100]$

0	j=1	j=2	j=3	j=4
i=1	0			
i=2		0		
i=3			0	
i=4				0

• problem:

Given a list of **sorted** values (associated with probabilities), find a binary search tree (BST) whose total weight is minimized

• example: A (0.1), B (0.2), C (0.4), D (0.3)

• What is the time complexity of a brute force algorithm?

- sub-problem
 - cost of a tree with values from i to j

$$C[i,j] = \min_{i \le k \le j} \{C[i,k-1] + C[k+1,j]\} + \sum_{s=i}^{J} p_s$$

• example: A (0.1), B (0.2), C (0.4), D (0.3)

$\{i,j\}$	0	1	2	3	4
1					
2					
3					
4					
5					

Algorithm 0.1: OptBST $(A[1 \cdots n])$

$$\begin{aligned} & \textbf{for } i \leftarrow \{1 \cdots n\} \\ & \textbf{do } \begin{cases} C[i,i-1] \leftarrow 0 \\ C[i,i] \leftarrow A[i] \end{cases} \\ & \textbf{for } d \leftarrow \{1 \cdots n-1\} \\ & \textbf{do } \begin{cases} & \textbf{for } i \leftarrow 1 \cdots n-d \\ & \textbf{min} \leftarrow \infty \\ & \textbf{for } k \leftarrow \{i \cdots j\} \end{cases} \\ & \textbf{do } \begin{cases} & \textbf{if } C[i,k-1] + C[k+1,j] < min \\ & \textbf{then } min \leftarrow C[i,k-1] + C[k+1,j] \end{cases} \\ & C[i,j] \leftarrow min + \sum_{s=i}^{j} A[s] \end{aligned}$$

Assembly Line

schedule an optimal assembly

each number is a circle represent delay

Assembly Line

- sub-problems
 - C(i,j) is the optimal solution up to the station $S_{i,j}$
 - define the sub-problem recursively

$$C(1,j) = \min\{C(1,j-1), C(2,j-1) + t_{2,j}\} + a_{1,j}$$

$$C(2,j) = \min\{C(2,j-1), C(1,j-1) + t_{1,j}\} + a_{2,j}$$

Final solution

$$C = \min\{C(1,n) + x_1, C(2,n) + x_2\}$$

Assembly Line

Example

j =	1	2	3	4	5	6
C(1,j)						
C(2,j)						

•
$$C = \min\{$$

$$=$$