CS583 Lecture 05 Greedy Algorithms Jyh-Ming Lien

Intro

- Greedy algorithm is algorithm that makes the locally optimal choice at each stage with the hope of finding the global optimum
- Greedy algorithm never changes the choices that have been made

Intro

- Advantages
- Simple and Intuitive
- Work for problems such as minimum spanning tree, shortest path problem, and data compression.
- Disadvantages
- Be very careful when use it. May not work for many problems
- But still provide good approximate solution

Outline

- Problems we are going to look at today
- The Activity Selection Problem
- Huffman coding
- Knapsack problem(s)

Activity Selection

- Optimization problem
- select a max-size subset of compatible activities

Activity	i	1	2	3	4	5	6	7	8	9	$\mid 10$	11
Start time	s_{i}	1	3	0	5	3	5	6	8	8	2	12
Finish time	f_{i}	4	5	6	7	8	9	10	11	12	13	14

- possible subsets?
- brute force approach?

Activity Selection

- This problem can be solved using dynamic programming!
- sub-problem:
- a recursive definition:

Activity Selection

- Converting it to a greedy algorithm

Activity Selection

$$
\begin{aligned}
& \text { Algorithm Greedyactivity }(s, f) \\
& \begin{array}{l}
n \leftarrow|S| \\
A \leftarrow\left\{a_{1}\right\} \\
i \leftarrow 1 \\
\text { for } m \leftarrow 2 \text { to } n \text { do } \\
\quad \text { if } s_{m} \geq f_{i} \text { then } \\
\qquad \quad A \leftarrow A \cup\left\{a_{m}\right\} \\
\quad i \leftarrow m
\end{array} \quad \begin{array}{l}
\text { endif } \\
\text { endfor } \\
\text { return } A
\end{array}
\end{aligned}
$$

Huffman Coding

- binary cipher

Letter	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length encoding	000	001	010	011	100	101

- A message consisting of 100 K a-f characters would require:

Huffman Coding

- fixed length vs. variable length coding

Letter	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101
Variable-length encoding	0	101	100	111	1101	1100

- OOIOIIIOI uniquely converts to:
- this requires how many bits with fixed length coding?

Huffman Coding

- fixed vs. variable length coding

Letter	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101
Variable-length encoding	0	101	100	111	1101	1100

Huffman Coding

- problem: minimize this:

$$
B(C)=\sum_{i=1}^{n} f\left(a_{i}\right) \cdot L\left(c\left(a_{i}\right)\right)
$$

- Huffman developed a greedy algorithm for producing a minimum-cost prefix code. The code that is produced is called a Huffman Code

Huffman Coding

- Basic idea
- greedy: low frequency letters should be at the bottom of the tree
- build the encoding tree from bottom up

Huffman Coding

- greedy algorithm

Algorithm $\operatorname{HUFFMAN}(C)$
$n \leftarrow|C|$
$Q \leftarrow C$
for $i \leftarrow 1$ to $n-1$ do
\{allocate a new node z\}
left $[z] \leftarrow x \leftarrow$ Extract-Min (Q)
right $[z] \leftarrow y \leftarrow$ Extract- $\operatorname{Min}(Q)$
$f[z] \leftarrow f[x]+f[y]$
$\operatorname{INSERT}(Q, z)$
endfor
return Extract-Min (Q)

Knapsack

\square Knapsack Problem: Given n objects, each object has weight w and value v, and a knapsack of capacity W, find most valuable items that fit into the knapsack

\square Brute force approach

- generate a list of all potential solutions
- evaluate potential solutions one by one
- when search ends, announce the solution(s) found
\square What is the time complexity of the brute force algorithm?

Knapsack

\square Dynamic programming approach

- Assume that we want to compute the optimal solution $S(w, i)$ for capacity $w<W$ with i items
- Assume that we know the optimal solutions $S\left(w^{\prime}, i^{\prime}\right)$ for all $w^{\prime} \leq w$ and $i^{\prime} \leq i$
- Option 1: Don't add the k-th item to the bag, then $S(w, i)=S(w, i-1)$
- Option 2: Add the k-the item to the bag, then
$S(w, i)=S\left(w-w_{i}, i-1\right)+v_{i}$

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$12 \mathrm{~kg}, \$ 4$															
$1 \mathrm{~kg}, \$ 2$															
$2 \mathrm{~kg}, \$ 2$															
$1 \mathrm{~kg}, \$ 1$															
$4 \mathrm{~kg}, \$ 10$															

Knapsack

- greedy algorithm \#|
- Put object with smallest weight in knapsack first
- Add objects (according to sorted order of weights) into knapsack as long as there is capacity
- result:
- time complexity:

Knapack

- greedy algorithm \#2
- focusing on maximizing profit while minimizing weight
- add items with $\max \frac{v_{i}}{w_{i}}$ first, where v_{i} and w_{i} are the value and weight of item i
- result:
- time complexity:

Fractional Knapack

- You can take fractions of an object
- Problem: Fit objects (taking even fractions of them) that give the maximum total profit
- The optimal solution of this problem can be obtained using a greedy algorithm
- why?

