CS583 Lecture 05 Greedy Algorithms

some materials here are based on Prof. Shehu, and Prof. Wang's past lecture notes

Intro

- Greedy algorithm is algorithm that makes the locally optimal choice at each stage with the hope of finding the global optimum
- Greedy algorithm never changes the choices that have been made

Intro

• Advantages

- Simple and Intuitive
- Work for problems such as minimum spanning tree, shortest path problem, and data compression.

• Disadvantages

- Be very careful when use it. May not work for many problems
- But still provide good approximate solution

Outline

- Problems we are going to look at today
 - The Activity Selection Problem
 - Huffman coding
 - Knapsack problem(s)

- Optimization problem
 - select a max-size subset of compatible activities

Activity	i	1	2	3	4	5	6	7	8	9	10	11
Start time	s_i	1	3	0	5	3	5	6	8	8	2	12
Finish time	f_i	4	5	6	7	8	9	10	11	12	13	14

- possible subsets?
- brute force approach?

- This problem can be solved using dynamic programming!
 - sub-problem:
 - a recursive definition:

• Converting it to a greedy algorithm

Algorithm GREEDYACTIVITY(s, f) $n \leftarrow |S|$ $A \leftarrow \{a_1\}$ $i \leftarrow 1$ for $m \leftarrow 2$ to n do if $s_m \ge f_i$ then $A \leftarrow A \cup \{a_m\}$ $i \leftarrow m$ endif endif

return A

• binary cipher

Letter	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length encoding	000	001	010	011	100	101

• A message consisting of 100K a-f characters would require:

• fixed length vs. variable length coding

Letter	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101
Variable-length encoding	0	101	100	111	1101	1100

- 001011101 uniquely converts to:
 - this requires how many bits with fixed length coding?

• fixed vs. variable length coding

Letter	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101
Variable-length encoding	0	101	100	111	1101	1100

• problem: minimize this:

$$B(C) = \sum_{i=1}^{n} f(a_i) \cdot L(c(a_i))$$

 Huffman developed a greedy algorithm for producing a minimum-cost prefix code. The code that is produced is called a Huffman Code

- Basic idea
 - greedy: low frequency letters should be at the bottom of the tree
 - build the encoding tree from bottom up

• greedy algorithm

Algorithm HUFFMAN(C) $n \leftarrow |C|$ $Q \leftarrow C$ for $i \leftarrow 1$ to n - 1 do {allocate a new node z} $left[z] \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)$ $right[z] \leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)$ $f[z] \leftarrow f[x] + f[y]$ INSERT(Q, z)endfor return EXTRACT-MIN(Q)

Knapsack

 \Box Knapsack Problem: Given *n* objects, each object has weight *w* and value *v*, and a knapsack of capacity *W*, find most valuable items that fit into the knapsack

- □ Brute force approach
 - generate a list of all potential solutions
 - evaluate potential solutions one by one
 - when search ends, announce the solution(s) found
- □ What is the time complexity of the brute force algorithm?

Knapsack

□ Dynamic programming approach

- Assume that we want to compute the optimal solution S(w, i) for capacity w < W with *i* items
- Assume that we know the optimal solutions S(w', i') for all $w' \le w$ and $i' \le i$
- Option 1: Don't add the k-th item to the bag, then S(w, i) = S(w, i 1)
- Option 2: Add the k-the item to the bag, then $S(w, i) = S(w - w_i, i - 1) + v_i$

w	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
12kg, \$4															
1kg, \$2															
2kg, \$2															
1kg, \$1															
4kg, \$10															

 \Box Time complexity?

Knapsack

- greedy algorithm #I
 - Put object with smallest weight in knapsack first
 - Add objects (according to sorted order of weights) into knapsack as long as there is capacity
- result:
- time complexity:

Knapack

- greedy algorithm #2
 - focusing on maximizing profit while minimizing weight
 - add items with max $\frac{v_i}{w_i}$ first, where

 v_i and w_i are the value and weight of item i

- result:
- time complexity:

Fractional Knapack

- You can take fractions of an object
- **Problem**: Fit objects (taking even fractions of them) that give the maximum total profit
- The optimal solution of this problem can be obtained using a greedy algorithm
 - why?