
CS583 Lecture 05
Greedy Algorithms

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang’s past lecture notes

Intro
• Greedy algorithm is algorithm that makes

the locally optimal choice at each stage
with the hope of finding the global
optimum

• Greedy algorithm never changes the
choices that have been made

Intro
• Advantages

- Simple and Intuitive

- Work for problems such as minimum
spanning tree, shortest path problem, and
data compression.

•Disadvantages

- Be very careful when use it. May not work
for many problems

- But still provide good approximate solution

Outline
• Problems we are going to look at today

- The Activity Selection Problem

- Huffman coding

- Knapsack problem(s)

Activity Selection
• Optimization problem

- select a max-size subset of compatible
activities

- possible subsets?

- brute force approach?

Activity Selection
• This problem can be solved using dynamic

programming!

- sub-problem:

- a recursive definition:

Activity Selection
• Converting it to a greedy algorithm

Activity Selection

Huffman Coding
• binary cipher

• A message consisting of 100K a-f
characters would require:

Huffman Coding
• fixed length vs. variable length coding

• 001011101 uniquely converts to:

- this requires how many bits with fixed
length coding?

Huffman Coding
• fixed vs. variable length coding

Huffman Coding
• problem: minimize this:

• Huffman developed a greedy algorithm for
producing a minimum-cost prefix code. The
code that is produced is called a Huffman
Code

Huffman Coding
• Basic idea

- greedy: low frequency letters should be
at the bottom of the tree

- build the encoding tree from bottom up

Huffman Coding
• greedy algorithm

Knapsack

Knapsack

Knapsack
• greedy algorithm #1

- Put object with smallest weight in knapsack first

- Add objects (according to sorted order of
weights) into knapsack as long as there is
capacity

• result:

• time complexity:

Knapack
• greedy algorithm #2

- focusing on maximizing profit while
minimizing weight

- add items with max first, where

• result:

• time complexity:

vi
wi

vi and wi are the value and weight of item i

Fractional Knapack
• You can take fractions of an object

• Problem: Fit objects (taking even
fractions of them) that give the maximum
total profit

• The optimal solution of this problem can
be obtained using a greedy algorithm

- why?

