CS583 Lecture 05
Basic Graph Algorithms

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof.Wang’s past lecture notes

Graph Representation

® What is a graph

® VWhat can we do with a graph!?

Graph Types

Graph Representation

o"e

1.2
1.2 C -
: (o)
2 5
LG
3 3

Graph Representation

® Representations

- Adjacency matrix

- Adjacency list (a list of vertices and each vertex has
a list of edges)

® Basic Operations

- add/delete vertices/edges
- count edges/vertices/degree
- check the existence of a vertex or an edge

® Represent each of the previous graphs in both
format and discuss the time complexity of each
operation

Graph Representation

® Advanced operations (a very short list....)

check if two vertices are connected
compute # of connect components

find one or many (shortest/longest) path(s)
between two or all pairs of vertices

find a spanning tree

compare two graphs (isomorphism)
cut graphs (graph partitioning)
linearize a graph

cluster vertices/edges

visualize a graph

Explore Graph

® Many of the aforementioned problems depends
on a systematical way of exploring a graph

® Two basic tools to safely explore an unknown
environment

Breath First Search

® Basic idea: sort graph vertices level by level

E "\—)S ‘ ~ A
)) A''C DE
Y
D C B

B

® Algorithm

BFS

® Time complexity:

® Examples

BFS

® Properties:
- Creates a spanning tree

- optimal way for finding the short path for
unweighted graph

» proof:

Depth First Search

® Basic idea: deepening as much as possible
before coming back

® Algorithms

DFS

® Time complexity

® Examples

Problems

® Examples

e Given an undirected graph G, report the number of connect components

(CC) in G

Given two vertices v and v, check if v and v are from the same (CC)

Given a tree T', can you preprocess 1" so that you can answer if u is the
ancestor of v for a give pair of nodes u and v.

Identify types (tree, back, forward, and cross) of edges in a directed graph

=

Topological Sort

A graph G without (directed) cycle is a directed acyclic graphs (DAG)
DAG can be found in modeling many problems that involve
prerequisite constraints (construction projects, document version

&) —(®
control) 9 @ Q

Given a directed graph G, identify cycles in G

— proof

Topological Sort

00 Topological sorting or Linearization: Vertices of a DAG can be
linearly ordered so that:

— Every edge its starting vertex is listed before its ending vertex
— Being a DAG is also a necessary condition for topological sorting
be possible

O Example:

B —®
B—0 ©®

Topological Sort

® Algorithms

® Time complexity

Topological Sort

oW @,
@\@/

(&)
()

Topological Sort

® Why does it work!?

® Another method:

Strongly Connected Components

O Definition: Two nodes u and v are from the connected if and only if
there is a path from « to v and a path from v to u.

O Definition: A set of vertices form a strongly connected component
(SCC) iff any pairs of vertices are connected.

(@ |-
L

SCC Observations

|. SCC and DAG

* converting each SCC to a node
* the resulting meta-graph is a dag!

2. Any node in a SCC in the sink of the dag
can only reach nodes in the same SCC

3. Finding a node in a source SCC is easier
than finding a node in a sink SCC

e Note that we DO NOT know how the dag looks like!

SCC Observations

* A nodein a source SCC can be found by the
largest post visit number

- Proof

* A reversed graph G’ of a graph G, G and G’ have
the same # of SCCs

- Proof

® Algorithms

SCC

® Time complexity

® Examples:

(A) ~(B)

SCC

 _ I.\

> H

9

SCC

® Why do we need to find a SCC?

