CS583 Lecture 05 Basic Graph Algorithms Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang's past lecture notes

- What is a graph
- What can we do with a graph?

- Representations
 - Adjacency matrix
 - Adjacency list (a list of vertices and each vertex has a list of edges)
- Basic Operations
 - add/delete vertices/edges
 - count edges/vertices/degree
 - check the existence of a vertex or an edge
- Represent each of the previous graphs in both format and discuss the time complexity of each operation

- Advanced operations (a very short list....)
 - check if two vertices are connected
 - compute # of connect components
 - find one or many (shortest/longest) path(s) between two or all pairs of vertices
 - find a spanning tree
 - compare two graphs (isomorphism)
 - cut graphs (graph partitioning)
 - linearize a graph
 - cluster vertices/edges
 - visualize a graph

Explore Graph

- Many of the aforementioned problems depends on a systematical way of exploring a graph
- Two basic tools to safely explore an unknown environment

Breath First Search

• Basic idea: sort graph vertices level by level

BFS

• Algorithm

• Time complexity:

BFS

- Properties:
 - creates a spanning tree
 - optimal way for finding the short path for unweighted graph
 - proof:

Depth First Search

• Basic idea: deepening as much as possible before coming back

DFS

• Algorithms

• Time complexity

DFS

• Examples

Problems

• Examples

- Given an undirected graph G, report the number of connect components (CC) in G
- Given two vertices u and v, check if u and v are from the same (CC)
- Given a tree T, can you preprocess T so that you can answer if u is the ancestor of v for a give pair of nodes u and v.
- Identify types (tree, back, forward, and cross) of edges in a directed graph

- \Box A graph G without (directed) cycle is a *directed acyclic graphs* (DAG)
- □ DAG can be found in modeling many problems that involve prerequisite constraints (construction projects, document version

 $\hfill\square$ Given a directed graph G, identify cycles in G

- proof

- □ **Topological sorting** or **Linearization**: Vertices of a DAG can be linearly ordered so that:
 - Every edge its starting vertex is listed before its ending vertex
 - Being a DAG is also a necessary condition for topological sorting be possible
- \Box Example:

• Algorithms

• Time complexity

• example

• Why does it work?

Strongly Connected Components

- \Box **Definition**: Two nodes u and v are from the connected if and only if there is a path from u to v and a path from v to u.
- □ Definition: A set of vertices form a strongly connected component (SCC) iff any pairs of vertices are connected.

SCC Observations

- I. SCC and DAG
 - converting each SCC to a node
 - the resulting meta-graph is a dag!
- 2. Any node in a SCC in the sink of the dag can only reach nodes in the same SCC
- 3. Finding a node in a source SCC is easier than finding a node in a sink SCC
 - Note that we DO NOT know how the dag looks like!

SCC Observations

• A node in a source SCC can be found by the largest post visit number

- Proof

- A reversed graph G' of a graph G, G and G' have the same # of SCCs
 - Proof

SCC • Algorithms • Time complexity

SCC

• Why do we need to find a SCC?