
CS583 Lecture 05
Basic Graph Algorithms

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang’s past lecture notes

Graph Representation
• What is a graph

• What can we do with a graph?

Graph Types

a

b

c

d

a

bc

d

a

bc

d

1.2

2

3

4 1

a

bc
1.2

3

4 2.5

Graph Representation

a

b

c

d

a

bc

d

a

bc

d

1.2

2

3

4 1

a

bc
1.2

3

4 2.5

Graph Representation
• Representations

- Adjacency matrix

- Adjacency list (a list of vertices and each vertex has
a list of edges)

• Basic Operations

- add/delete vertices/edges

- count edges/vertices/degree

- check the existence of a vertex or an edge

• Represent each of the previous graphs in both
format and discuss the time complexity of each
operation

Graph Representation
• Advanced operations (a very short list....)

- check if two vertices are connected

- compute # of connect components

- find one or many (shortest/longest) path(s)
between two or all pairs of vertices

- find a spanning tree

- compare two graphs (isomorphism)

- cut graphs (graph partitioning)

- linearize a graph

- cluster vertices/edges

- visualize a graph

Explore Graph
• Many of the aforementioned problems depends

on a systematical way of exploring a graph

• Two basic tools to safely explore an unknown
environment

-

-

Breath First Search
• Basic idea: sort graph vertices level by level

BFS
• Algorithm

• Time complexity:

BFS
• Examples

a

bc

d

BFS
• Properties:

- creates a spanning tree

- optimal way for finding the short path for
unweighted graph

‣ proof:

Depth First Search
• Basic idea: deepening as much as possible

before coming back

DFS
• Algorithms

• Time complexity

DFS
• Examples

Problems
• Examples

• Given an undirected graph G, report the number of connect components
(CC) in G

• Given two vertices u and v, check if u and v are from the same (CC)

• Given a tree T , can you preprocess T so that you can answer if u is the
ancestor of v for a give pair of nodes u and v.

• Identify types (tree, back, forward, and cross) of edges in a directed graph

a

bc

d

Topological Sort

Topological Sort

Topological Sort
• Algorithms

• Time complexity

Topological Sort
• example

Topological Sort
• Why does it work?

• Another method:

Strongly Connected Components

SCC Observations
1. SCC and DAG

• converting each SCC to a node

• the resulting meta-graph is a dag!

2. Any node in a SCC in the sink of the dag
can only reach nodes in the same SCC

3. Finding a node in a source SCC is easier
than finding a node in a sink SCC

• Note that we DO NOT know how the dag looks like!

SCC Observations
• A node in a source SCC can be found by the

largest post visit number

- Proof

• A reversed graph G’ of a graph G, G and G’ have
the same # of SCCs

- Proof

SCC
• Algorithms

• Time complexity

SCC
• Examples:

SCC
• Why do we need to find a SCC?

