
CS583 Lecture 08
Single Source Shortest Path

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang’s past lecture notes

Path Weight
•

•

Shortest Path
•

• may not be unique

• the shortest paths from one vertex to all
the other vertices form a tree

Shortest Path
• Variants

- single source

- single destination

- single pair

- all pairs (next week)

• negative edge weight

- assume there are no negative cycles

Optimal Structure
• Any subpath of a shortest path is a shortest

path

- proof

Cycles
• Shortest path cannot contain cycles

(assume that no negative cycles)

- proof

Shortest Path
• output of the shortest path algorithm for

each vertex v from source s

- d[v], distance from s

‣ this is initially +

‣ reduces as algorithm progress

- π[v], the predecessor of v on a shortest
path from s

‣ this is initially null

∞

The RELAX function
• we can alway improve the value of d[v] for

v by relaxing an edge (u,v)

• RELAX will never hurt your solution!

A Framework
• A framework for single-source shortest

paths (SSSP) algorithms

- make all d[v]= and π[v]=null

- call RELAX

• The algorithms differ in

- the order RELAX is called

- the number of times RELAX is called

∞

Important Properties
• triangle inequality

• upper-bound property

• no-path property

• convergence property

• path relaxation property
if d[u] = δ(s, u), then after RELAX(u,v,w), d[v] = δ(s, v)

bellman-ford algorithm
• allow negative edge weights

• can detect negative cycles

bellman-ford algorithm
• Example

• Time complexity? Why does it work?

DAG
• algorithm

• Example:

• Time complexity? Why does it work?

Dijkstra’s Algorithm
• no negative weights

• a weighted version of BFS

- instead of a queue, uses a priority queue

- keys are d[v]

• very similar to Prim’s algorithm

- greedy

- iteratively expand the shortest path tree

- differences?

Dijkstra’s algorithm
• algorithm

Dijkstra’s algorithm
• example

• time complexity

• why does it work?

Other Algorithms
• Best-first search

• A* (and D*) search

- Both best-first search and Dijsktra’s
algorithm are a special case of A*

• Iterative deepening depth-first search

• We will also look at algorithms that find all-
pairs shortest-paths next week

