CS583 Lecture 08

Single Source Shortest Path

Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof.Wang’s past lecture notes




Path Weight

® Weight of path p = (vo, vy, ..., O )
k
Z w(v;—1, ;)

i=1

= sum of edge weights on path p .

® Shortest-path weight 11 to v:

o, v) = min {w(p) : u = v} if there exists a path 1 ~ v ,
N o0 otherwise .




Shortest Path

® Shortest path # to » 1s any path p such that w(p) = o(u, v).

® may not be unique

3

y z Z
® the shortest paths from one vertex to all
the other vertices form a tree




Shortest Path

® Variants
- single source

- single destination

- single pair
- all pairs (next week)
® negative edge weight

- assume there are no negative cycles




Optimal Structure

® Any subpath of a shortest path is a shortest
path

OAAD AL

- proof




Cycles

® Shortest path cannot contain cycles
(assume that no negative cycles)

- proof




Shortest Path

® output of the shortest path algorithm for
each vertex v from source s

- dJv], distance from s
» this is initially +oo
» reduces as algorithm progress

- TT[v], the predecessor of v on a shortest
path from s

» this is initially null




The RELAX function

® we can alway improve the value of d[v] for
v by relaxing an edge (u,v)

RELAX(u, v, w)

if d[v] > d[u] + w(u, v)
then d|v] < d[u] + w(u, v)
T[v] « u

® RELAX will never hurt your solution!




A Framework

® A framework for single-source shortest
paths (SSSP) algorithms

= make all d[v]=0oc and TT[v]=null
- call RELAX

® The algorithms differ in
- the order RELAX is called

- the number of times RELAX is called




Important Properties

® triangle inequality (s, v) < &(s, u) + w(u, v)

® upper-bound property
Always have d[v] > d(s, v) for all v. Once d[v] = d(s, v), it never changes.

® no-path property If (s, v) = oo, then d[v] = oo always.

® convergence property
if dlu] = d(s,u), then after RELAX(u,v,w), d[v] = d(s,v)
® path relaxation property

Let p = (vg, 01, ..., ;) be a shortest path from s = vy to v;. If we relax,
in order, (vg, v1), (1, 05), ..., (vr_1, v;), even Intermixed with other relaxations,
then d[iﬂg—] = (5(_5.. V).




bellman-ford algorithm

® allow negative edge weights

® can detect negative cycles

BELLMAN-FORD(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)
fori «1to|V]|—1

do for each edge (i7,v) € E

do RELAX (i, v, w)

for each edge (1, v) € E

do if d[v] > d[u] + w(u, v)

then return FALSE

return TRUE




bellman-ford algorithm

® Example

® Time complexity! Why does it work!?




DAG

® algorithm

DAG-SHORTEST-PATHS(V, E, w, §)

topologically sort the vertices
INIT-SINGLE-SOURCE(V, s)
for each vertex u, taken in topologically sorted order
do for each vertex v € Adj[u]
do RELAX (i, v, w)

® Example:

® Time complexity? Why does it work!?




Dijkstra’s Algorithm

® no negative weights
® a weighted version of BFS

- instead of a queue, uses a priority queue
- keys are d[v]
® very similar to Prim’s algorithm
- greedy
- iteratively expand the shortest path tree

- differences!?




Dijkstra’s algorithm

® algorithm

DIIKSTRA(V, E, w, s)

INIT-SINGLE-SOURCE(V, s)
S« 0

O «V > 1.e., Insert all vertices into Q
while O #£ 0
do 7 < EXTRACT-MIN(Q)
S « SU{u}
for each vertex v € Adj[u]
do RELAX (1, v, w)




Dijkstra’s algorithm

® example

y,
® time complexity

® why does it work?




Other Algorithms

® Best-first search
® A* (and D*) search

- Both best-first search and Dijsktra’s
algorithm are a special case of A*

® |terative deepening depth-first search

® We will also look at algorithms that find all-
pairs shortest-paths next week




