CS583 Lecture 08 Single Source Shortest Path Jyh-Ming Lien

some materials here are based on Prof. Shehu, and Prof. Wang's past lecture notes

Path Weight

• Weight of path
$$p = \langle v_0, v_1, \dots, v_k \rangle$$

= $\sum_{i=1}^k w(v_{i-1}, v_i)$

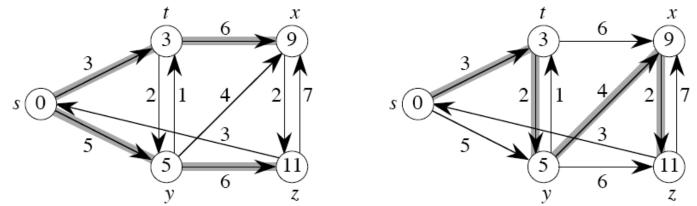
= sum of edge weights on path p.

• Shortest-path weight u to v:

$$\delta(u, v) = \begin{cases} \min \{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there exists a path } u \rightsquigarrow v \\ \infty & \text{otherwise} \end{cases}$$

Shortest Path

- Shortest path *u* to *v* is any path *p* such that $w(p) = \delta(u, v)$.
- may not be unique



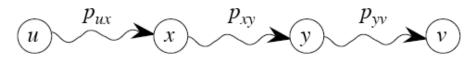
 the shortest paths from one vertex to all the other vertices form a tree

Shortest Path

- Variants
 - single source
 - single destination
 - single pair
 - all pairs (next week)
- negative edge weight
 - assume there are no negative cycles

Optimal Structure

Any subpath of a shortest path is a shortest path



- proof

Cycles

• Shortest path cannot contain cycles (assume that no negative cycles)

- proof

Shortest Path

- output of the shortest path algorithm for each vertex *v* from source s
 - _ d[v], distance from s
 - this is initially + ∞
 - reduces as algorithm progress
 - π[v], the predecessor of v on a shortest
 path from s
 - this is initially null

The RELAX function

 we can alway improve the value of d[v] for v by relaxing an edge (u,v)

> RELAX(u, v, w)if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$

• RELAX will never hurt your solution!

A Framework

- A framework for single-source shortest paths (SSSP) algorithms
 - make all d[v]= ∞ and π [v]=null
 - call RELAX
- The algorithms differ in
 - the order RELAX is called
 - the number of times RELAX is called

Important Properties

- triangle inequality $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- upper-bound property

Always have $d[v] \ge \delta(s, v)$ for all v. Once $d[v] = \delta(s, v)$, it never changes.

• no-path property If $\delta(s, v) = \infty$, then $d[v] = \infty$ always.

convergence property

if $d[u] = \delta(s, u)$, then after RELAX(u, v, w), $d[v] = \delta(s, v)$

• path relaxation property

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s = v_0$ to v_k . If we relax, *in order*, $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$.

bellman-ford algorithm

- allow negative edge weights
- can detect negative cycles

```
BELLMAN-FORD (V, E, w, s)

INIT-SINGLE-SOURCE (V, s)

for i \leftarrow 1 to |V| - 1

do for each edge (u, v) \in E

do RELAX(u, v, w)

for each edge (u, v) \in E

do if d[v] > d[u] + w(u, v)

then return FALSE

return TRUE
```

bellman-ford algorithm

• Example

• Time complexity? Why does it work?

DAG

algorithm

DAG-SHORTEST-PATHS (V, E, w, s)topologically sort the vertices INIT-SINGLE-SOURCE (V, s)for each vertex u, taken in topologically sorted order do for each vertex $v \in Adj[u]$ do RELAX(u, v, w)

- Example:
- Time complexity? Why does it work?

Dijkstra's Algorithm

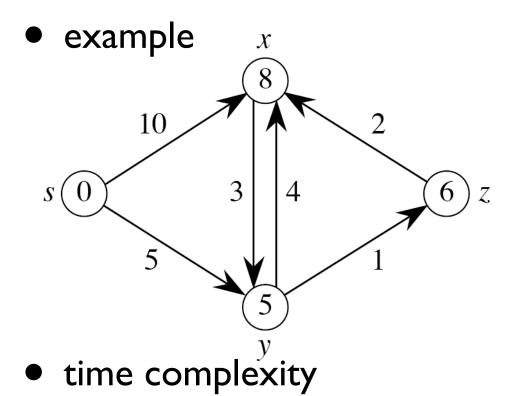
- no negative weights
- a weighted version of BFS
 - instead of a queue, uses a priority queue
 - keys are d[v]
- very similar to Prim's algorithm
 - greedy
 - iteratively expand the shortest path tree
 - differences?

Dijkstra's algorithm

algorithm

DIJKSTRA(V, E, w, s) INIT-SINGLE-SOURCE(V, s) $S \leftarrow \emptyset$ $Q \leftarrow V$ \triangleright i.e., insert all vertices into Qwhile $Q \neq \emptyset$ do $u \leftarrow \text{EXTRACT-MIN}(Q)$ $S \leftarrow S \cup \{u\}$ for each vertex $v \in Adj[u]$ do RELAX(u, v, w)

Dijkstra's algorithm



• why does it work?

Other Algorithms

- Best-first search
- A* (and D*) search
 - Both best-first search and Dijsktra's algorithm are a special case of A*
- Iterative deepening depth-first search
- We will also look at algorithms that find allpairs shortest-paths next week