CS583 Lecture 10 Max Flow \& Min Cut

Jyh-Ming Lien

Problem Description

- Soviet Rail Network, 1955 [A. Schrijive 02]

- What is the maximum goods can be sent from city A to city B ?

Max flow vs. Min Cut

- Max flow and Min cut
- two very rich algorithmic problems
- cornerstone problems in combinatorial optimization
- duality (as in linear programming)

Min Cut Problem

- Input: G, s (source), t (target), c (capacity)
- Cut:a set of edges whose removal separate s and t into two connected components
- Cut capacity: sum of weights of edges leaving s
- Min cut problem: Given G, find a cut with minimum cut capacity

Min Cut Problem

- Example:

Max Flow

- Input: G, s (source), t (target), c (capacity)
- Flow
- conservation: inflow=outflow for each vertex (except s and t)
- flow cannot exceed edge capacity
- Max Flow problem: Given G, find max flow sent from s to t

Max Flow

- Examples

Flow and Cut

- Property I:The flow across a cut is equal to the amount reaching t (target)

Flow and Cut

- Property 2:The flow from s to t is at most the capacity of a cut

- Property 3: If the capacity of a cut equals a flow. Then the flow is a max flow and the cut is a min cut.

First Attempt

- Greedy algorithm
- find a path and send a flow
- decrease the capacity along the path
- repeat until no flow can be sent

First Attempt

- What is wrong with the greedy approach?
- Can we do something to fix the greedy algorithm?
- Idea: Residual graph

Ford-Fulkerson

- Ford-Fulkerson's algorithm
- find a path and send a flow
- augmenting flow along the path
- repeat until no flow can be sent

Ford-Fulkerson

- Example

Ford-Fulkerson

- Prove the correctness
- time complexity:

Ford-Fulkerson

- issue: How to select a good augmenting path?

Edmonds-Karp

- Ideas of choosing good augmenting paths
- shortest path
- fattest path

Edmonds-Karp

- Time complexity

Applications

- Bipartite matching
- input
- output

Application

- Edge disjoint paths in a graph
- input:
- output

Applications

- multi-sources multi-targets max flow problem

