CS583 Lecture 10 Max Flow & Min Cut

Jyh-Ming Lien

some materials here are based on Prof. Kevin Wayne, Prof. Shehu, and Prof. Wang's past lecture notes

Problem Description

• Soviet Rail Network, 1955 [A. Schrijver 02]

• What is the maximum goods can be sent from city A to city B?

Max flow vs. Min Cut

- Max flow and Min cut
 - two very rich algorithmic problems
 - cornerstone problems in combinatorial optimization
 - duality (as in linear programming)

Min Cut Problem

- Input: G, s (source), t (target), c (capacity)
- **Cut**: a set of edges whose removal separate s and t into two connected components
- Cut capacity: sum of weights of edges leaving s
- **Min cut problem**: Given G, find a cut with minimum cut capacity

Max Flow

- Input: G, s (source), t (target), c (capacity)
- Flow
 - conservation: inflow=outflow for each vertex (except s and t)
 - flow cannot exceed edge capacity
- Max Flow problem: Given G, find max flow sent from s to t

Flow and Cut

 Property I: The flow across a cut is equal to the amount reaching t (target)

Flow and Cut

Property 2: The flow from s to t is at most the capacity of a cut
2 - 679 - 5

• Property 3: If the capacity of a cut equals a flow. Then the flow is a max flow and the cut is a min cut.

First Attempt

- Greedy algorithm
 - find a path and send a flow
 - decrease the capacity along the path

First Attempt

- What is wrong with the greedy approach?
- Can we do something to fix the greedy algorithm?
- Idea: Residual graph

- Ford-Fulkerson's algorithm
 - find a path and send a flow
 - augmenting flow along the path

• Example

• Prove the correctness

issue: How to select a good augmenting path?

Edmonds-Karp

- Ideas of choosing good augmenting paths
 - shortest path
 - fattest path

Edmonds-Karp

Time complexity

Applications

- Bipartite matching
 - input
 - output

Application

- Edge disjoint paths in a graph
 - input:

Applications

 multi-sources multi-targets max flow problem

