CS583 Lecture II Linear Programming
 Jyh-Ming Lien

Linear Programming

- A linear programming problem usually looks like this:

Linear Programming

- Methods that solve linear programming problems
- Simplex methods (I947)
- exponential worst case time
- very fast in practice
- ellipsoid algorithm (1979)
- polynomial worst case time
- slow in practice
- Interior-point methods (1984)
- polynomial worst case time
- competitive with simplex methods

Example

- Single-source short paths problem

Examples

- Max flow problem

Examples

- Min-cost flow problem
- linear programming can solve variant of problems that do not have an efficient algorithm yet

- $a(u, v)$: cost of each unit flow

Simplex Methods

named one of the top ten best algorithms in 20th century

TSPortrait of Dantzig by Robert Bosch. George Dantzig (1914-2005) was the father of linear programming and the inventor of the Simplex Method.

Geometric View

Ex:Apple sells two types of ipod

Example: maximize $x_{1}+6 x_{2}$

x_{1}	≤ 200
x_{2}	≤ 300
$x_{1}+x_{2}$	≤ 400
x_{1}	≥ 0
x_{2}	≥ 0

Optimal solution can always be found at a vertex

Simplex Methods

- Simplex is a type of "iterative improvement" method
- Key idea
- starting with a vertex v of the convex set (of feasible solutions)
- find another vertex v^{\prime} adjacent to v with a higher objective value
- $v=v^{\prime}$, until no better adjacent vertex
- Some more geometry
- A vertex is formed by intersecting n constraints (for a problem with n variables)
- Two adjacent vertices will share $n-1$ constraints (and one different constraint)
- Main steps
- find an initial solution
- update the current solution

Simplex Methods

- In most cases, our initial point is simple
- ($0,0, \ldots, ., 0$)
- this is the intersection of all $x_{i} \geq 0$
- when all coefficients in the objective function are negative, this solution is optimal
- to pick an adjacent vertex, we simply pick a variable x_{i}
- whose coefficient is positive
- try to maximize x_{i}

Simplex Methods

Example: maximize $x_{1}+6 x_{2}$

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Simplex Methods

- What do we do if our current solution is not ($0,0, \ldots, 0$)?
- we transform our problem so that the current solution is $(0,0, \ldots, 0)$
- Some more geometry
- coordinated are defined by "distance" to the constraints (axis)
- after moving to an adjacent vertex, one constraint (axis) is changed
- therefore the coordinate defined by the new constraint (axis) needs to be changed
- the distance to a hyperplane $a_{i} x=b_{i}$ is simply $b_{i}-a_{i} x$

Simplex Methods

Example: maximize $x_{1}+6 x_{2}$
geometric interpretation

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Simplex Methods

- some loose ends
$\square \quad$ What if $(0,0, \cdots, 0)$ is not a feasible vertex? How do we start the process?We can modify the original LP problem by adding m artificial variables z_{i}, where m is the number of constraints. Now our new LP problem becomes:
- $\quad z_{0} \geq 0, z_{1} \geq 0, \ldots z_{m-1} \geq 0$
- Add z_{i} to the left size of the i-th constraint
- minimize $z_{0}+z_{1}+\cdots+z_{m-1}$
\square First the initial vertex of the modified LP is easy to obtain:
$\left(x_{1}=0, x_{2}=0, \cdots, x_{n-1}=0, z_{0}=b_{0}, z_{1}=b_{1}, \cdots, z_{m-1}=b_{m-1}\right)$
\square Once we have the initial vertex, we can use the Simplex algorithm to solve the modified LP problem
\square Now, if we have $z_{0}+z_{1}+\cdots+z_{m-1}=0$, we have an initial solution to solve the original LP problem
\square If $z_{0}+z_{1}+\cdots+z_{m-1} \neq 0$, the original LP will not have a feasible solution

Simplex Methods

- time complexity? n variable, m constraints

Duality

\square How do we convert a primal to a dual? Let's look at our chocolate factory example: maximize $x_{1}+6 x_{2}$

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

\square We know that when $\left(x_{1}, x_{2}\right)=(100,300)$, the objective function is 1900

- Amazingly this is exact: $5 \cdot\left(x_{2} \leq 300\right)+\left(x_{1}+x_{2} \leq 400\right)$
\square Therefore, in some way, we can verify the optimal value by manipulating the constraints.

Duality

\square How do we find the values 5 and 1 above? We introduce 3 variables ($\left.y_{1}, y_{2}, y_{3}\right) \geq 0$ to represent these values and rewrite the objective function

Duality

\square Duality is in fact a general phenomenon. It exists for all linear programming.
\square Duality Theorem: If a linear program has a bounded optimum, then so does its dual, and two optimum values coincide.

\square General Primal/Dual LP conversion

$$
\begin{array}{cc}
\text { Primal LP : } & \text { Dual LP : } \\
\max c_{1} x_{1}+\cdots+c_{n} x_{n} & \min b_{1} y_{1}+\cdots+b_{m} y_{m} \\
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \leq b_{1} & a_{11} y_{1}+\cdots+a_{m 1} y_{m} \leq c_{1} \\
\vdots & \vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n} \leq b_{m} & a_{n 1} y_{1}+\cdots+a_{n m} y_{m} \leq c_{n} \\
x_{1}, \cdots, x_{n} \geq 0 & y_{1}, \cdots, y_{m} \geq 0
\end{array}
$$

Example of Duality

$\square \quad$ Why do we consider duality?

- Sometimes the dual problem is easier to solve than the primal problem.
- To gain new insights
- Note: duality does not make one solve the problem more efficiently.
\square Maximum flow problem vs. Minimum cut problem
$\square \quad$ Shortest path problem vs. Longest distance problem

