CS583 Lecture 11 Linear Programming

Jyh-Ming Lien

Linear Programming

• A linear programming problem usually looks like this:

Linear Programming

- Methods that solve linear programming problems
 - Simplex methods (1947)
 - exponential worst case time
 - very fast in practice
 - ellipsoid algorithm (1979)
 - polynomial worst case time
 - slow in practice
 - Interior-point methods (1984)
 - polynomial worst case time
 - competitive with simplex methods

Examples • Max flow problem c=5 1/2 215 х 9 9= a= a= 1/1c = 1S S *a* = 3 = 3 $c \ge$ 2/2 c = ` 314 9=5 u≡1 a= ~

Examples

- Min-cost flow problem
 - linear programming can solve variant of problems that do not have an efficient algorithm yet

- a(u,v): cost of each unit flow

named one of the top ten best algorithms in 20th century

TSPortrait of Dantzig by Robert Bosch. George Dantzig (1914-2005) was the father of linear programming and the inventor of the Simplex Method.

Geometric View

Ex: Apple sells two types of ipod

Optimal solution can always be found at a vertex

- Simplex is a type of "iterative improvement" method
- Key idea
 - starting with a vertex v of the convex set (of feasible solutions)
 - find another vertex v' adjacent to v with a higher objective value
 - -v = v', until no better adjacent vertex
- Some more geometry
- A vertex is formed by intersecting n constraints (for a problem with n variables)
- Two adjacent vertices will share n-1 constraints (and one different constraint)
- Main steps
 - find an initial solution
 - update the current solution

- In most cases, our initial point is simple
 - **–** (0,0,....,0)
 - this is the intersection of all $x_i \ge 0$
 - when all coefficients in the objective function are negative, this solution is optimal
 - to pick an adjacent vertex, we simply pick a variable x_i
 - whose coefficient is positive
 - try to maximize x_i

Example: maximize $x_1 + 6x_2$

$$egin{array}{ccccc} x_1 &\leq & 200 \ x_2 &\leq & 300 \ x_1 + x_2 &\leq & 400 \ x_1 &\geq & 0 \ x_2 &\geq & 0 \end{array}$$

- What do we do if our current solution is not (0,0,...,0)?
 - we **transform our problem** so that the current solution is (0,0,...,0)
- Some more geometry
 - coordinated are defined by "distance" to the constraints (axis)
 - after moving to an adjacent vertex, one constraint (axis) is changed
 - therefore the coordinate defined by the new constraint (axis) needs to be changed
 - the distance to a hyperplane $a_i x = b_i$ is simply $b_i a_i x$

Example: maximize $x_1 + 6x_2$

geometric interpretation

$$egin{array}{ccccc} x_1 &\leq & 200 \ x_2 &\leq & 300 \ x_1+x_2 &\leq & 400 \ x_1 &\geq & 0 \ x_2 &\geq & 0 \end{array}$$

some loose ends

□ What if (0, 0, ..., 0) is not a feasible vertex? How do we start the process?
□ We can modify the original LP problem by adding *m* artificial variables z_i, where *m* is the number of constraints. Now our new LP problem becomes:

- $z_0 \geq 0, z_1 \geq 0, ... z_{m-1} \geq 0$
- Add z_i to the left size of the *i*-th constraint
- minimize $z_0 + z_1 + \cdots + z_{m-1}$
- First the initial vertex of the modified LP is easy to obtain: $(x_1 = 0, x_2 = 0, \dots, x_{n-1} = 0, z_0 = b_0, z_1 = b_1, \dots, z_{m-1} = b_{m-1})$
- Once we have the initial vertex, we can use the Simplex algorithm to solve the modified LP problem
- □ Now, if we have $z_0 + z_1 + \cdots + z_{m-1} = 0$, we have an initial solution to solve the original LP problem
- \Box If $z_0 + z_1 + \cdots + z_{m-1} \neq 0$, the original LP will not have a feasible solution

• time complexity? n variable, m constraints

Duality

□ How do we convert a primal to a dual? Let's look at our chocolate factory example: **maximize** $x_1 + 6x_2$

$$egin{array}{rcl} x_1 &\leq 200 \ x_2 &\leq 300 \ x_1+x_2 &\leq 400 \ x_1,x_2 &\geq 0 \end{array}$$

- □ We know that when $(x_1, x_2) = (100, 300)$, the objective function is 1900
 - Amazingly this is exact: $5 \cdot (x_2 \le 300) + (x_1 + x_2 \le 400)$
- \Box Therefore, in some way, we can *verify* the optimal value by manipulating the constraints.

Duality

□ How do we find the values 5 and 1 above? We introduce 3 variables $(y_1, y_2, y_3) \ge 0$ to represent these values and rewrite the objective function

Example of Duality

- \Box Why do we consider duality?
 - Sometimes the dual problem is easier to solve than the primal problem.
 - To gain new insights
 - Note: duality does not make one solve the problem more efficiently.
- □ Maximum flow problem vs. Minimum cut problem
- □ Shortest path problem vs. Longest distance problem

