
CS262 Lecture 01
Introduction

Jyh-Ming Lien
Department of Computer Science

Introduction to Low-level Programming

• instructor: Jyh-Ming Lien
• jmlien@cs.gmu.edu

• Office: ENGR 4442
• Office hours: Monday 4-6 pm

• TA’s office hours will be posted soon

2

Introduction to Low-level Programming

• Monday 12:00 pm - 1:15 pm
• Science Technology I room 224

• this class only meets 10 weeks and ends at
Nov 07, 2011

• Last day to drop without penalty: Sep 06,
2011

• Course webpage:
– http://www.cs.gmu.edu/~jmlien/teaching/cs262-C/

3

Prerequisites

• C or better in
– CS 211 (OOP) or

– CS 222 (Programming for Engineers)

• No exceptions

4

Course Scopes

• Most high-level programming languages
insulate the programmer from the realities
of the hardware on which the programs will
run

• Examples are:
– memory management

– file system management
– process management
– hardware signals

5

Course Scopes

• C is the exception since it was originally
designed to implement the Unix operating
system

• C offers the programmer direct access to
much of the underlying hardware and, for
programs running under Unix, direct access
to operating system services

6

Course Scopes

• For these reasons C remains the language of
choice for systems programming.
– What are other reasons?

– What are your reasons?

7

Course Scopes

• This is a (short) course on "low-level"
programming using C

• We will learn C with heavy emphasis on
pointer operations, i.e.,
– how to allocate, manipulate, free memory

without crashing your code

8

Course Outcomes

• Be able to implement, test and debug a
designed solution to a problem in a low-
level programming language, specifically
the C programming language.

• Demonstrate a good understanding of C
language constructs such as pointers,
dynamic memory management, and
address arithmetic.

9

Course Outcomes

• Demonstrate a good understanding of C
libraries for input and output, and the
interface between C programs and the
UNIX operating system.

• Demonstrate an ability to use UNIX tools
for program development and debugging
– vi, emacs, jEdit

10

TextBook

• Brian Kernighan and Dennis Ritchie, The C
Programming Language, 2nd ed., Prentice
Hall, 1988 (a.k.a. K&R)

11

• Dennis Ritchie from AT&T
Bell Lab is the inventor of C

• Professor, Department of
Computer Science Princeton
University Princeton

Topics

• C Types, Operators, and Expressions
• Control Flow

• Functions and Program Structures
• Pointers and Arrays

• Dynamic memory allocation
• Structures
• Bitwise operations

• Input and Output Libraries
• The Unix System Interface

12

Grading

• Programming Assignments 30%
– There will be two to three or more

programming assignments

– Midterm and Final Exams 60%
• Dates will be posted soon

– Quizzes 10%
• Pop quizzes

13

Policies

• All required assignments should be
completed by the stated due date and time

• The total score of your assignment score
will be 10 points less every extra day after
the due date
– i.e., the 100 total points will become zero after

10 days pass the due date

• You are responsible for keeping backups of
your work
– my disk crashed" and "my roommate ate my

program" are not reasons for late submissions
14

Policies

• You can only turn in a program once.
• No revisions or additions can be made to

your program after it has been submitted.

15

Policies

• ll coursework is to be done independently
• You are encouraged to discuss the material

BEFORE you do the assignment

• The homework should be written strictly by
yourself

• Plagiarizing the homework will be
penalized by maximum negative credit and
cheating on the exam will earn you an F in
the course.

16

A bit History

• born in the Computer Science Research
Department of Bell Labs in Murray Hill, NJ

17

A bit History

• C is created with Unix in mind

18

A bit History

• Standardized in 1989 by ANSI (American National
Standards Institute) known as ANSI C

• International standard (ISO) in 1990 which was
adopted by ANSI and is known as C89

• As part of the normal evolution process the standard
was updated in 1995 (C95) and 1999 (C99)

• C++ and C
– C++ extends C to include support for Object

Oriented Programming and other features that
facilitate large software development projects

– Unfortunately, there two ISO committees for C and
C++.

19

Elements of a C Program

• A C development environment includes
– System libraries and headers: a set of standard

C libraries and their header files.
•For example see /usr/include and glibc.

– Application Source: application source and
header files

– Compiler: converts source to object code for
a specific platform

– Linker: resolves external references and
produces the executable module

20

Elements of a C Program

• There must be one main function where
execution begins when the program is run.
– int main (void) { ... },

– int main (int argc, char *argv[]) { ... }
– UNIX Systems have a 3rd way to define main(),

though it is not POSIX.1 compliant
• int main (int argc, char *argv[], char *envp[])

• Preprocessors
– macros, compiler controls, constant values

• additional local and external functions and
variables

21

Examples Code

• see example code

22

Pitfalls of C

• Great power comes with great responsibility
• C is procedural language, it easy to writ

spaghetti code

• Preprocessors can get really messy
• no way to gracefully terminate a program

– no catch/throw/exception

• not too many (there are some) help from the
language for doing OOP/OOD

• Many others... (Recommend reading: C Traps and

Pitfalls, by Andrew Koenig)
23

Your Tasks This Week

• We will use only gcc
• Your assignments will be compiled using

gcc -c89

• gcc is available on (virtually) all systems.
This includes the
– mason cluster,
– Linux,
– Windows (you must install Cygwin), and

– Mac OS X (you must install Xcode).

24

Your Tasks This Week

• Learn about Makefile
– GNU `make'

– a power build system
– determines automatically which pieces of a

large program need to be recompiled, and
issues the commands to recompile them

– this is very useful if you have many header files
and source files

25

Your Tasks This Week

• Get familiar with a text editor
– Emacs

– Vi (or Vim)
– jEdit,

– TextWrangler (mac)
– don’t use Word or any word processors as they

will have your document with extra characters

• We will look at some IDEs when we talk
about debuggers

26

Final Note

• ACM ICPC
– If you don’t know, ACM is the most important

professional organization for computer science

– ACM ICPC: Annual contest for teams of 3
university/college students involving algorithmic
programming problems

– C/C++, Java are used in the contest

– Our teams have performed very well in the past
years (almost get into world final last year...)

– Kickoff meeting this Friday at 4:30pm in ENGR
4201

– contest date: November 5, 2011
27

