
CS262 Lecture 03
Chapter 4 Functions

Jyh-Ming Lien
Department of Computer Science

function

• call-by-value
– the arguments are local variables whose values are

copied from the callers
– each function call allocates all these local variables

which are placed on the top of the call stack

– ex: long ans=fib(n); //in ex4.c
• variable n in main function and variable n in fib function

are different variables even though they have the same
value.

– ex: void swap(int a, int b); //won;t work
– void swap(int * a, int * b); //need to use pointers

2

function

• Since array variables are pointers so:
– char A[]=”GMU”, B[]=”UMD”;
– swap(A,B); //call by value

– void swap(int X[], int Y[]){...}
• X will have address A
• Y will have address B

• java is also “call-by-value” and “references” (i.e.
pointers) are passed when arguments are objects
– so, java does have pointers (references), but you

cannot manipulate them

3

scopes

• scopes

– life span (global, local)
– visibility (static, extern)

• Life span
– variables outside all functions are global

variables (has life span of the program)
– variables inside a function is local to a function

call (does not span different calls) unless “static”
is used

• int foo(){ static int x=0; printf(“x=%d”,x++); }
• call foo multiple times will output different values

4

scopes

• see
– static.c

5

scopes

• Visibility (for global variables)

– similar to private, protected, public in java/c++

– static means “only visible to the file contains
that variable”

– extern means “visible to the entire program”
• this is default for all global variables

–

6

scopes

• see
– longest-line-2.c

– longest-line-3 (dir)

7

typedef and call-back functions

• see call-back.c

8

typedef and call-back functions

• see call-back.c

9

variadic functions

• a function that take arbitrary number of
arguments

• ex:in c, it can have this prototype:
– int foo(char * format, int size, ...);
– there must be one fixed parameter

– there is “...” to indicate the rest of variables

• macros in stdarg.h are used to retrieve the
rest of arguments

• there is also variadic marco for the same
purpose

10

variadic functions

• see varags-full.c

11

