(5262 Lecture 03
Chapter 4 Functions

Jyh-Ming Lien

Department of Computer Science




function

e call-by-value

— the arguments are local variables whose values are
copied from the callers

each function call allocates all these local variables
which are placed on the top of the call stack

ex: long ans=fib(n); //in ex4.c

e variable n in main function and variable n in fib function
are different variables even though they have the same
value.

ex: void swap(int a, int b); //won;t work
void swap(int * a, int * b); //need to use pointers




function

e Since array variables are pointers so:
— char A[]="GMU”, B[]="UMD”;
— swap(A,B); //call by value
— void swap(int X[], int Y[]){...}
e X will have address A
e Y will have address B

e java is also “call-by-value” and “references” (i.e.
pointers) are passed when arguments are objects

— 50, java does have pointers (references), but you
cannot manipulate them




scopes

® scopes
— life span (global, local)
— visibility (static, extern)

e Life span

— variables outside all functions are global
variables (has life span of the program)

— variables inside a function is local to a function
call (does not span different calls) unless “static”
is used

e int foo(){ static int x=0; printf(“x=%d”,x++); }
e call foo multiple times will output different values




® See
— static.c

scopes




scopes

e Visibility (for global variables)

— similar to private, protected, public in java/c++

— static means “only visible to the file contains
that variable”

— extern means “visible to the entire program”

e this is default for all global variables




scopes

® see
— longest-line-2.c

— longest-line-3 (dir)




typedef and call-back functions

e see call-back.c




typedef and call-back functions

e see call-back.c




variadic functions

 a function that take arbitrary number of
arguments

e ex:in ¢, it can have this prototype:

— int foo(char * format, int size, ...);
— there must be one fixed parameter

— there is “...” to indicate the rest of variables

e macros in stdarg.h are used to retrieve the
rest of arguments

e there is also variadic marco for the same
purpose




variadic functions

e see varags-full.c




