(5262 Lecture 04
Chapter 5 Pointers

Jyh-Ming Lien

Department of Computer Science

IIIIIIIIII

The Anatomy of C Memory

e application's address space

— read only address

— read/write address | ™ STR

— aligned address

e multi-byte types i

— physical address Heap
Bos Uninitialized variabies
ata Iniialzed variables

0 Text fastrction
e unix like systems

The Anatomy of C Memory

FFFF FFFF

e application's address space
— read only address

8000 0000

— read/write address

T7FFF 0000

—_ al igned address Default System DLL Space

7000 0000

e multi-byte types
— physical address

Default User DLL Space
1000 0000

Initial Heap (grows up)

Stack (grows down)

Reserved Stack

* win32 systems RS

3

Variables in Memory Map

// fixed address: visible to other files
int global_static;
// fixed address: only visible within file
static int file_static;
// parameters always stacked
int foo(int auto_param)
{
// fixed address: only visible to function
static int func_static;
// stacked: only visible to function
int auto_i, auto_a[10];
// array explicitly allocated on heap
double *auto_d = malloc(sizeof(double)*5);
// return value in register or stacked

return auto_i;

Pointer

A pointer stores an address in application's

address space

read “pointer” as “an address pointing to”

Int 1=5;
Int * p= & I;

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

(0x3A28213A
Ox6339292C,
Ox 73636832E.

[HATE YOU.

Y

aligned
memory
address

wN -0

248,439
248,440
248,441
248,442
248,443
248,444
248,445
248,446
248,447
248,448

Pointer

memory

Four bytes
reserved for
the variable
“i" at address
248,440

Four bytes
reserved for
the pointer
"p" at address
248,444

WN -0

248,439
248,440

248,444

memory

SHIOMIMSMOH +0023

i=5;

p=&i;

-

“p" holds the
address of "I*

Declare a Pointer

e examples
— int *i, j; //1is a pointer but j is just int
— inti, *j; //jis a pointer but i is not
— int *i, *j; // both i and j are pointers
—int ** i = &j; // what is this?

— void * x=i;

Dereferencing

Int 1=5;

Int * p=&ai;

p=10; // this means p has address 10
*p=10; // this changes the value at address p

¢ see swap.cC

Dereferencing

const

1.const Int * p; //a pointer to const int
® *p=0; //wrong
® p=&i; p=&j; //OK

2.int const * p; //same as above

3.int * const p; //a const pointer to int
® *p=0; //OK
® p=&i; //wrong

Pointers and Array

char A[]="GMU"; //A[0]="g" is allowed
char * A="GMU"; //ok, but A[0]="g" will crash

char * p=A; //array name is the pointer of its firs
element

p=&Al0]; //same as above
p=&A; //same as above

Multi-Dimensional Arrary

char * B[]={"Hello”,”World"}; //array of char *
char C[2][3]; //array of char with 6 elements
(char *) * p=B; //OK

char ** p=C; //wrong

char * p=&C[0][0]; //OK

char * p=C; //same as above

void bar(char * foo[]){...}
bar(B); //OK
bar(C); //wrong!, void bar(char foo[l[3]) or bar(char *);

char * D[]=B; //wrong, char * D[]={"A",”B”,”C"} or char
** D=B

Pointer and Array

e There are differences between A (array)
and p (pointer)
— you can'’t assign values to A but can do so to p
* A=p; //wrong
— sizeof(A) gives you the size of the entire array
— sizeof(p) gives you the size of a pointer
— p++ is allowed, but A++ is not

Pointer and Array

e char A[]="GMU";

e char * p=&A[1];

e printf(“%c”,pl-1]);

e what has been printed?

9.

xR N O U1 B W N =

Operation Cost

. Integer arithmetic
. Pointer access

. Simple conditionals and loops

Static and automatic variable access
Array access

Floating-point with hardware support
Switch statements

Function calls

Floating-point emulation in software

10. Malloc() and free()

11. Library functions (sin, log, printf, etc.)

12. Operating system calls (open, brk, etc.)

less costly

more costly

Programming Assignment #1

e given a list of boxes, determine isolated boxes
(boxes that don’t overlap with any other boxes)

e see PA1-002_ zameer.c

