
CS262 Lecture 04
Chapter 5 Pointers

Jyh-Ming Lien
Department of Computer Science

The Anatomy of C Memory

• application's address space
– read only address
– read/write address
– aligned address

•multi-byte types
– physical address

2

• unix like systems

The Anatomy of C Memory

• application's address space
– read only address
– read/write address
– aligned address

•multi-byte types
– physical address

3

• win32 systems

Variables in Memory Map

// fixed address: visible to other files

int global_static;

// fixed address: only visible within file

static int file_static;

// parameters always stacked

int foo(int auto_param)

{

// fixed address: only visible to function

static int func_static;

// stacked: only visible to function

int auto_i, auto_a[10];

// array explicitly allocated on heap

double *auto_d = malloc(sizeof(double)*5);

// return value in register or stacked

return auto_i;

}

4

Pointer

• A pointer stores an address in application's
address space

• read “pointer” as “an address pointing to”

• int i=5;
• int * p= & i;

5

Pointer

6

aligned
memory
address

Declare a Pointer

• examples
– int *i, j; // i is a pointer but j is just int

– int i, *j; // j is a pointer but i is not
– int *i, *j; // both i and j are pointers

– int ** i = &j; // what is this?
– void * x=i;

7

Dereferencing

• int i=5;
• int * p=&i;

• p=10; // this means p has address 10
• *p=10; // this changes the value at address p

8

Dereferencing

• see swap.c

9

const

1.const int * p; //a pointer to const int
•*p=0; //wrong

•p=&i; p=&j; //OK

2.int const * p; //same as above

3.int * const p; //a const pointer to int
•*p=0; //OK

•p=&i; //wrong

10

Pointers and Array

• char A[]=”GMU”; //A[0]=’g’ is allowed
• char * A=”GMU”; //ok, but A[0]=’g’ will crash

• char * p=A; //array name is the pointer of its firs
element

• p=&A[0]; //same as above
• p=&A; //same as above

11

Multi-Dimensional Arrary

• char * B[]={“Hello”,”World”}; //array of char *

• char C[2][3]; //array of char with 6 elements

• (char *) * p=B; //OK

• char ** p=C; //wrong

• char * p=&C[0][0]; //OK

• char * p=C; //same as above

• void bar(char * foo[]){...}

• bar(B); //OK

• bar(C); //wrong!, void bar(char foo[][3]) or bar(char *);

• char * D[]=B; //wrong, char * D[]={“A”,”B”,”C”} or char
** D=B

12

Pointer and Array

• There are differences between A (array)
and p (pointer)
– you can’t assign values to A but can do so to p

• A=p; //wrong

– sizeof(A) gives you the size of the entire array

– sizeof(p) gives you the size of a pointer
– p++ is allowed, but A++ is not

13

Pointer and Array

• char A[]=”GMU”;
• char * p=&A[1];

• printf(“%c”,p[-1]);
• what has been printed?

14

Operation Cost

1. Integer arithmetic

2. Pointer access

3. Simple conditionals and loops

4. Static and automatic variable access

5. Array access

6. Floating-point with hardware support

7. Switch statements

8. Function calls

9. Floating-point emulation in software

10. Malloc() and free()

11. Library functions (sin, log, printf, etc.)

12. Operating system calls (open, brk, etc.)

15

more costly

less costly

Programming Assignment #1

• given a list of boxes, determine isolated boxes
(boxes that don’t overlap with any other boxes)

• see PA1-002_zameer.c

16

