
CS262 Lecture 07
Chapter 6 Structure

Jyh-Ming Lien
Department of Computer Science

The struct Definition

• struct is a keyword
• Format:

• name represents this structure’s tag and is optional
– we can either provide name
– or after the } we can list variables
– We can also use typedef

 struct name {
 type1 name1;
 type2 name2;
 …
 };

name1 and name2
are members of name

Examples

 struct point {
 int x;
 int y;
 };

struct point p1, p2;

p1 and p2 are both
points, containing an
x and a y value

struct {
 int x;
 int y;
} p1, p2;

p1 and p2 both
have the defined
structure, containing
an x and a y, but
do not have a tag

struct point {
 int x;
 int y;
} p1, p2;

same as the other
two versions, but
united into one set
of code, p1 and p2
have the tag point

An Array of Struct

4

struct key {
 char *word;

 int count;
};

struct key keytab[100];

struct key {
 char *word;

 int count;
} keytab[100];

equivalent

Initialize An Array of Struct

5

struct key {
 char *word;

 int count;
} keytab[] = { "auto", 0,

"break", 0, "case", 0, "char", 0,
"const", 0, "continue", 0,
"default", 0, /* ... */ "unsigned",
0, "void", 0, "volatile", 0,
"while", 0};

• see ex01.c and ex02.c

6

2

Using C Structs

• How do we access a C structure such as:

 #define MAXLEN 20
 struct test {

 int x,
 int y;

 char name[MAXLEN];
} t;
t.x = 2;

t.y = 5;

strncpy(t.name, “wilson”, MAXLEN);
trystruct(&t); /* pass to asm via pointer*/

3

Using C Structs

t.x ‘w’ ‘i’ ‘l’ ‘s’ ‘o’ ‘n’ ‘\0’t.y
0x0200e0 0x0200e4 0x0200e8 . . .

struct test

&t=&t.x

&t.y t.name=&t.name[0]

4

Using C Structs
• However, we would normally have a pointer to

string:
 #define MAXLEN 20
 char array [MAXLEN];
 struct test {

 int x,
 int y;
 char *name;
}t;
t.x = 2;
t.y = 5;
t.name = array;

strncpy(array, “wilson”, MAXLEN);

Using C Structs

&t

t.x

‘w’ ‘i’ ‘l’ ‘s’ ‘o’ ‘n’ ‘\0’

t.y

0x0200e0 0x0200e4 0x0200e8

struct test
t.name

0x020158 . . .

&t.y ?

Accessing structs

• A struct is much like an array
– The structure stores multiple data

• You can access the individual data
• you can reference the entire structure

– To access a particular member, you use the “.” operator
• as in p1.x and p1.y

– Use “- >” to reference a field if the struct is pointed to by
a pointer

• Legal operations on the struct
– assignment (make a copy)
– taking its address with &

– passing it as a parameter

12

structs as Parameters
• pass structs as parameters and functions can return

structs
– Passing as a parameter:

• void foo(struct point x, struct point y) {…}
– notice that the parameter type is not just the tag, but preceded by

the reserved word struct

– Returning a struct:

 struct point createPoint(int a, int b)
 {
 struct point temp;
 temp.x = a;
 temp.y = b;
 return temp;
 }

So, what happened in call stack
when both functions are called and
returned?

structs as Parameters

• C functions are call-by-value
• void foo(struct point x, struct point y)

14

struct point a, b;
foo(a,b);
...

struct point x=a;
struct point y=b;
...

main()

foo()

ca
ll

st
ac

k

Inputting a struct in a Function

• We will need to do multiple
inputs for our struct
– Rather than placing all of the

inputs in main, let’s write a
separate function to input all
the values into our struct

• Will this code work?

#include <stdio.h>

struct point { int x; int y; };

void getStruct(struct point);
void output(struct point);
void main()
{

struct point y = {0, 0};
getStruct(y);
output(y);

}

void getStruct(struct point p) {
scanf("%d", &p.x);
scanf("%d", &p.y);
printf("%d, %d", p.x, p.y);

}

void output(struct point p) {
printf("%d, %d", p.x, p.y);

}

One Solution For Input

• In our previous solution, we passed the struct into the function
and manipulated it in the function, but it wasn’t returned

• In our input function, we can instead create a temporary struct
and return the struct rather than having a void function

 struct point inputPoint()
 {
 struct point temp;
 scanf(“%d”, &temp.x);
 scanf(“%d”, &temp.y);
 return temp;
 }

void main()
{
 struct point y = {0, 0};
 y = getStruct();
 output(y);
}

We could also pass the address of y and treat the struct like an array, we will
see this next, but it requires a change in how we handle the members of the struct

Pointers to Structs
• The previous solution had two major flaws:

– It requires twice as much memory
• we needed 2 points, one in the input function, one in the function that

called input

– It is slow
• required copying each member of temp back into the

members of the original struct
– So instead, we might choose to use a pointer to the struct
– We see an example next, but first…

• If a is a pointer to a struct, then to access the struct’s
members, we use the -> operator as in a->x

Pointer-based Example

see ex03.c and ex04.c

Nested structs
• In order to provide modularity, it is common to use already-

defined structs as members of additional structs

• Recall our point struct, now we want to create a rectangle struct
– the rectangle is defined by its upper left and lower right points

 Now consider the following
 struct rectangle r, *rp;
 rp = &r;

 Then the following are all equivalent
 r.pt1.x
 rp->pt1.x
 (r.pt1).x
 (rp->pt1).x
But not rp->pt1->x (since pt1 is not a pointer to a
point)

 struct point { int x; int y; }

 struct rectangle {
 struct point pt1;
 struct point pt2;
 }

If we have
 struct rectangle r;
Then we can reference
 r.pt1.x, r.pt1.y,
 r.pt2.x and r.pt2.y

typedef
• typedef is used to define new types

– The format is
• typedef description name;

– Where description is a current type or a structural description
such as an array declaration or struct declaration

– Examples:
 typedef int Length; // Length is now equivalent to the type int

 typedef *char[10] Strings; // Strings is the name of a type for an array of 10 strings

 typedef struct node { // declares a node structure that contains
 int data; // a data item and a pointer to a struct of type node
 struct node *next;
 };

We can simplify our later uses of node by doing the following

typedef struct node aNode; // this allows us to refer to aNode instead of struct node

Linked Structures

• Our last topic is in building linked structures
– lists, trees

• These are dynamic structures, when you want to add a
node, you allocate a new chunk of memory and attach
it to the proper place in the structure via the pointers
– Each node in the structure will have at least one datum and at

least one pointer
– In linked lists, the pointer is a next pointer to the next node in

the list, in a tree, there are left and right children pointers
– We will use malloc to allocated the node
– We will need to traverse the structure to reach the proper place

to insert a new node
• A linked list example is given separately on my web site

Declarations for Nodes

 struct node {
 int data;
 struct node *next;
 };

 node *front;

front is a pointer to the first
node in a linked list. It may
initially be NULL. Traversing
our linked list might use code like
this:

 temp = front;
 while(temp!=NULL)
 {
 // process temp
 temp=temp->next;
 }

 struct treeNode {
 int data;
 struct treeNode *left;
 struct treeNode *right;
 };

Our root node will be declared as
treeNode *root;

It is common in trees to have
the root node point to the tree
via the right pointer only with
the left pointer remaining NULL

Declarations for Nodes

 struct node {
 int data;
 struct node *next;
 };

node *front=malloc(sizeof(node));
front->next=malloc(sizeof(node));
front->next->next=malloc(sizeof(node));
front->next->next->next=NULL;

Create a linked list with 4 elements

How do you use a for loop to simplify this?

Declarations for Nodes

• Note the difference

24

 struct node {
 int data;
 struct node *next;
 };

 struct node {
 int data;
 struct node next;
 };

recursive definition is NOT allowed
allowed since it’s NOT
recursive definition

