
CS262 Lecture 08
Chapter 7 File IO

Jyh-Ming Lien
Department of Computer Science

File system abstraction

• File: a sequence of bytes of data
• Filesystem: a space in which files can be stored
• Link: a named logical connection from a

directory to a file
• Directory: a special kind of file, that can contain

links to other files
• Filename: the name of a link
• Pathname: a chain of one or more filenames,

separated by /'s

2

File system abstraction

• inode: a segment of data in a filesystem that
describes a file, including how to find the rest of
the file in the system

• File descriptor: a non-negative integer, with a
per-process mapping to an open file description

• Open file description: an OS internal data-
structure, shareable between processes

3

Directories

4

hard links

Directories ... continued

• Names belong to links, not to files
• There may be multiple hard links to one file
• Renaming only renames one link to that file
• Unix allows both hard and soft links
• A file will exit even after the last hard link to it

has been removed, as long as there are
references to it from open file descriptions
– Soft links do not prevent deletion of the file

5

File Descriptors

• Each open file is associated with an open file
description
– Each process has a (logical) array of references to

open file descriptions

– Logical indices into this array are file descriptors
• These integer values are used to identify the files for I/O

operations

– The file descriptor 0 is reserved for standard input,
the file descriptor 1 for standard output, and the file
descriptor 2 for the standard error

6

File Descriptors

7

File Descriptors

• The POSIX standard defines the following
– File descriptor: A per-process, unique,

nonnegative integer used to identify an open file for
the purposes of file access

– Open file description: A record of how a process
or group of processes are currently accessing a file

• Each file descriptor refers to exactly one open file
description, but an open file description may be referred to
by more than one file descriptor

• A file offset, file status, and file access modes are attributes
of an open file description

– File access modes: Specification of whether the
file can be read and written

8

File Descriptors

– File offset: The byte position in the file where the
next I/O operation through that open file
description begins

• Each open file description associated with a regular file,
block special file, or directory has a file offset

• A character special file that does not refer to a terminal
device may have a file offset

• There is no file offset specified for a pipe or FIFO
(described later)

– File status: Includes the following information
• append mode or not
• blocking/nonblocking
• Etc

9

File Descriptors ... continued

• Important points
– A file descriptor does not describe a file

• It is just a number that is ephemerally associated with a
particular open file description

– An open file description describes a past "open"
operation on a file; its does not describe the file

– The description of the file is in the inode
• There may be several different open file descriptors (or

none) referring at it any given time

10

Files in C

• In C, each file is simply a sequential stream of
bytes. C imposes no structure on a file.

• A file must first be opened properly before it can
be accessed for reading or writing. When a file
is opened, a stream is associated with the file.

• Successfully opening a file returns a pointer to
(i.e., the address of) a file structure, which
contains a file descriptor and a file control block.

11

Files in C

• The statement:

	 	 	 FILE *fptr1, *fptr2 ;

	 declares that fptr1 and fptr2 are pointer variables
of type FILE. They will be assigned the address of
a file descriptor, that is, an area of memory that
will be associated with an input or output stream.

• Whenever you are to read from or write to the file,
you must first open the file and assign the address
of its file descriptor (or structure) to the file pointer
variable.

12

Opening Files

• The statement:

fptr1 = fopen ("mydata", "r") ;

	 would open the file mydata for input (reading).

• The statement:

fptr2 = fopen ("results", "w") ;

	 would open the file results for output (writing).

• Once the files are open, they stay open until you
close them or end the program (which will close
all files.)

13

Testing for Successful Open

• If the file was not able to be opened, then the value
returned by the fopen routine is NULL.

• For example, let's assume that the file mydata does
not exist. Then:

	 	 FILE *fptr1 ;
	 	 fptr1 = fopen ("mydata", "r") ;
	 	 if (fptr1 == NULL)
	 	 {
	 	 	 printf ("File 'mydata' did not open.\n") ;
	 	 }

14

Reading From Files

• In the following segment of C language code:

	 	 	 int a, b ;

	 	 	 FILE *fptr1, *fptr2 ;

	 	 	 fptr1 = fopen ("mydata", "r") ;

	 	 	 fscanf (fptr1, "%d%d", &a, &b) ;

	 the fscanf function would read values from
the file "pointed" to by fptr1 and assign those
values to a and b.

15

End of File
• The end-of-file indicator informs the program when

there are no more data (no more bytes) to be
processed.

• There are a number of ways to test for the end-of-file
condition. One is to use the feof function which
returns a true or false condition:

	 	
	 	 fscanf (fptr1, "%d", &var) ;
	 	 if (feof (fptr1))
	 	 {
	 	 	 printf ("End-of-file encountered.\n”);
	 	 }

16

End of File

• There are a number of ways to test for the end-
of-file condition. Another way is to use the
value returned by the fscanf function:

	 	 int istatus ;

	 	 istatus = fscanf (fptr1, "%d", &var) ;

	 	 if (istatus == EOF)
	 	 {
	 	 	 printf ("End-of-file encountered.\n”) ;
	 	 }

17

Writing To Files

• Likewise in a similar way, in the following
segment of C language code:

	 	 	 int a = 5, b = 20 ;

	 	 	 FILE *fptr2 ;
	 	 	 fptr2 = fopen ("results", "w") ;

	 	 	 fprintf (fptr2, "%d %d\n", a, b) ;

	 the fprintf functions would write the values
stored in a and b to the file "pointed" to by fptr2.
	

18

Closing Files

• The statements:

	 	 fclose (fptr1) ;
	 	 fclose (fptr2) ;

	 will close the files and release the file

descriptor space and I/O buffer memory.

19

Reading and Writing Files

#include <stdio.h>
int main ()
{
 FILE *outfile, *infile ;
 int b = 5, f ;
 float a = 13.72, c = 6.68, e, g ;

 outfile = fopen ("testdata", "w") ;
 fprintf (outfile, "%6.2f%2d%5.2f", a, b, c) ;

20

Reading and Writing Files

 infile = fopen ("testdata", "r") ;

 fscanf (infile,"%f %d %f", &e, &f, &g) ;

 printf ("%6.2f,%2d,%5.2f\n", e, f, g) ;

 fclose(infile);

 fclose (outfile) ;
}
12345678901234567890

 13.72 5 6.68

 13.72, 5, 6.68

21

position in a file

• change the position in a file
– fseek(FILE * f, long int offset, int from)

• from: SEEK_SET, SEEK_CUR, or SEEK_END

• rewind(f)
– move back to the beginning of the file
– same as fseek(f,0,SEEK_SET)

• ftell (get current position in the file)

22

position in a file

23

Hello WorldEOF

SEEK_ENDSEEK_SET

Exception handling: signal

• examples:
– divided by zero

– timer
– killed by other or its own process

– abort abnormally
– user press ctl-C (interrupt)
– segmentation fault, bus error

– file is ready to read/write
– ...

24

Exception handling: signal

• examples:
– SIGFPE: divided by zero

– SIGALRM: timer
– SIGKILL, SIGTERM, SIGSTOP, SIGTSTP: killed

by other or its own process

– SIGABRT: abort abnormally
– SIGINT: user press ctl-C (interrupt)
– SIGSEGV, SIGBUS: segmentation fault, bus

error

– SIGIO: file is ready to read/write
– ...

25

Exception handling: signal

• There are many default signals and 3rd
party defined signals
– Program Error Signals

– Termination Signals
– Alarm Signals

– Asynchronous I/O Signals
– Job Control Signals
– Nonstandard Signals

26

What can you do?

• Once a signal is received, your program can
– ignore the signal

– specify a handler function
– accept the default action for that kind of signal

– unless your signal is SIGKILL or SIGSTOP

27

handle a signal

• #include <signal.h>
• void signal(int sig, void (*handler)(int)))

– handler is a function pointer and provides a call
back function

• Examples
– signal(SIGABRT,SIG_DEF); //handle SIGABRT

using default behavior
– or define a call-back function

• void handler(int signum)

28

handle a signal

• a call-back function can be used to handle
multiple signals

• strsignal(signum) converts the signum (e.g.,
SIGABRT) to a human readable text

• see pa3/main.c

29

create signals

• int raise(int sig)
– ex: raise(SIGABRT); //very similar to abort(0);

30

Final Project Assignment

• using a “display library” using ANSI code
• emphasis: pointers, struct, FILE I/O, signal

• description: A bitmap in text describing an
environment (a game level) is given.

31

Final Project Assignment

• Each pixel in the bitmap is either a vector or
an obstacle

• The environment is a vector field with
obstacles

32

Final Project Assignment

• Your tasks (100 pts)
– Read given code
– Display the vector field and obstacle (40%)

• the size of the environment is unlimited

– Given a particle at a given position (x,y) in the
environment, trace and display the trajectory of the
particle in the vector field. (60%)

– the particle p is dead if
• p is trapped in a local minimum
• p hits an obstacle
• p hits the boundary
• p hits its own trajectory

33

Final Project Assignment

• Your tasks (bonus points)
– input control of the particle (for interactive

mode) 10%

– design a method to control the particle so that
the particle has the longest trail (auto mode)
30%

– design 1 large interesting environment (to be
defined) 10%

• Time: 3 weeks (from the time you have the code)

•

34

