Graph Representation

- **Terminology** $G = (V, E)$
 - $V =$ nodes or vertices $\{v\}$
 - $E =$ edges between pairs of nodes, $\{e = (u, v)\}$, where u and v are called **ends** of e
 - For directed edge $e = (u, v)$ is an ordered list where u is the **tail** and v is the **head** and e leaves u and enters v.
 - A path is a sequence of vertices $v_1, v_2, \cdots, v_{k-1}, v_k$. A path is called **simple** if $v_i \neq v_j \forall i \neq j$
 - A cycle is a path $v_1, v_2, \cdots, v_{k-1}, v_k$ in which $v_1 = v_k$, for $k > 2$, and the first $k - 1$ nodes are all distinct
 - An undirected graph is **connected** if for every pair of nodes u and v, there is a path between u and v.

![Graph Diagram](image)
An undirected graph G is a tree if
- G is connected
- G does not contain a cycle
- G has $n - 1$ edges, where n is the number of nodes in G

Many algorithms work by converting a graph to a tree (the simplest representation of the graph)
- shortest path tree
- spanning tree
- exploring tree (BFS, DFS, ...)
- ...
Graph Search

- What parts of the graph are reachable from a given vertex? (i.e., connected components)
- Many problems require processing all graph vertices (and edges) in systematic fashion
- Basic tools to safely explore an unknown environment
Graph Search

- Basic exploration algorithm

Algorithm 2.1: \texttt{EXPLORE}(G = \{V, E\}, v \in V)

- Can the algorithm always work?
 - proof
Graph Search

Example: EXPLORE(B)