
CS311 Data Structures
Lecture 15 — Graph

Jyh-Ming Lien

November 20, 2017



Graph Representation

I Terminology G = (V,E)
I V = nodes or vertices {v}
I E = edges between pairs of nodes, {e = (u, v)}, where u and v are

called ends of e
I For directed edge e = (u, v) is an ordered list where u is the tail and

v is the head and e leaves u and enters v.
I A path is a sequence of vertices v1, v2, · · · , vk−1, vk. A path is called

simple if vi 6= vj∀i 6= j
I A cycle is a path v1, v2, · · · , vk−1, vk in which v1 = vk, fork > 2,

and the first k − 1 nodes are all distinct
I An undirected graph is connected if for every pair of nodes u and v,

there is a path between u and v.



Graph and Tree

I An undirected graph G is a tree if
I G is connected
I G does not contain a cycle
I G has n− 1 edges, where n is the number of nodes in G

I Many algorithms work by converting a graph to a tree (the simplest
representation of the graph)

I shortest path tree
I spanning tree
I exploring tree (BFS, DFS, ...)
I ...
I



Graph Search

I What parts of the graph are reachable from a given vertex? (i.e.,
connected components)

I Many problems require processing all graph vertices (and edges) in
systematic fashion

I Basic tools to safely explore an unknown environment
I

I



Graph Search

I Basic exploration algorithm

Algorithm 2.1: explore(G = {V,E}, v ∈ V )

I Can the algorithm always work?
I proof



Graph Search

I Example: explore(B)


