CS311 Data Structures Lecture 01 — Introduction

Jyh-Ming Lien

June 3, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

(Abstract) Data Structures?

What are they?

Why do you have to learn data structures?

► Where will it be used (e.g. in CS 483)?

How to be a good computer engineer?

- Good engineers are lazy, otherwise
 - every door in a building
 - every light switch
 - every power outlet
 - every screw
 - ... would be different
- Lazy engineers spent minimum effort to solve a problem
 - never reinvent the wheel
 - never start from scratch
 - always reuse (but don't steal) existing tools.
- Lazy computer engineers write minimum code to solve a problem
- However, in CS 310, we start our code from scratch so we can learn
- Today's topic: How to become a lazy computer engineer?
 - Lazy computer engineers use generics
 - Lazy computer engineers use recursion
 - Lazy computer theoreticians use asymptotic notation

< ロ > < 母 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- What is a list (of integers)?
- Why do we need a linked list?
- What are the functions that we normally need to manipulate a list?
- Given an object x, how do we check if x is in the list? (we call this function, "find(x)")

Generic Linked List

Now, what do I do if I need a list of strings? Do I need to re-design the whole list?

- But I am lazy, so what should I do?
- ► Approach 1:
- Approach 2:

Find Max

27 28 30 31 32	23 25 26	16 17 18 19 20 21	9 10 11 12 13 14	8 7 6 5 4 3 2 1
~				<pre>cla</pre>
<pre>String [] stl = { "Joe", "Bob", "Bill", "Zeke" }; System.out.println(findMax(sh1)); System.out.println(findMax(st1)); }</pre>	<pre>Shape [] sh1 = { new Circle(2.0),</pre>	} /** * Test findMax on Shape and String objects. */ public static void main(String [] args) {	<pre>int maxIndex = 0; for(int i = 1; i < arr.length; i++) if(arr[i].compareTo(arr[maxIndex]) > 0) maxIndex = i; return arr[maxIndex];</pre>	<pre>ss FindMaxDemo /** /** * Return max item in arr. * Precondition: arr.length > 0 */ public static Comparable findMax(Comparable [] arr) { </pre>

Find Max

```
21
               27
                              26
                                              25
                                                              24
                                                                              23
                                                                                              22
                                                                                                                              20
                                                                                                                                              19
28
                                                                                                                                                              18
                                                                                                                                                                              17
                                                                                                                                                                                               16
                                                                                                                                                                                                             15
                                                                                                                                                                                                                               14
                                                                                                                                                                                                                                               13
                                                                                                                                                                                                                                                              12
                                                                                                                                                                                                                                                                               11
                                                                                                                                                                                                                                                                                               10
                                                                                                                                                                                                                                                                                                               9
                                                                                                                                                                                                                                                                                                                             \infty
                                                                                                                                                                                                                                                                                                                                              765
                                                                                                                                                                                                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                                                                                                                                             ω
                                                                                                                                                                                                                                                                                                                                                                                                                             2^{1}
                                                                                                              class
                                                                                                ~
                                                                                                                                                                                                ~
                                                                                                                                                                                                             class CaseInsensitiveCompare implements Comparator<String>
                                                                             public static void main( String [ ] args )
                                                                                                                                                             public int compare( String lhs, String rhs )
{ return lhs.compareToIgnoreCase( rhs ); }
                                                                                                                                                                                                                                                                                                                                                                                             AnyType findMax( AnyType
                                                                                                                                                                                                                                                                                                                                                                                                            public static <AnyType>
                                                                                                                                                                                                                                                                                                                                                                                                                             // Precondition: a.size( ) >
                                                                                                                                                                                                                                                                                                                                                                                                                                             // Generic findMax, with a function object.
                                                                                                             TestProgram
                               System.out.println( findMax( arr, new CaseInsensitiveCompare( ) ) )
                                            String [ ] arr =
                                                                                                                                                                                                                                                                                                                                                             int maxIndex = 0;
                                                                                                                                                                                                                                                                                                                            for( int i = 1; i < arr.size( ); i++ )</pre>
                                                                                                                                                                                                                                                              return arr[ maxIndex ];
                                                                                                                                                                                                                                                                                                             if( cmp.compareTo( arr[ i ], arr[ maxIndex ] ) > 0 )
                                                                                                                                                                                                                                                                                               maxIndex = i;
                                              { "ZEBRA", "alligator",
                                                                                                                                                                                                                                                                                                                                                                                           [ ] arr, Comparator<? super AnyType> cmp )
                                                                                                                                                                                                                                                                                                                                                                                                                               0
                                               "crocodile"
                                               <u>~</u>
```

► Fibonacci numbers fib(*n*):

$$fib(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ fib(n-1) + fib(n-2) & \text{if } n > 1 \end{cases}$$

Example: The first 10 Fibonacci numbers are: {0,1, ____, ___, ___, ___, ___, ___, ____} (1)

Our First Algorithm

Problem: What is fib(200)? What about fib(n), where n is any positive integer?

```
Algorithm 3.1: fib(n)

if n = 0

then return (0)

if n = 1

then return (1)

return (fib(n - 1) + fib(n - 2))
```

- Questions that we should ask ourselves.
 - 1. Is the algorithm correct?
 - 2. What is the running time of our algorithm?
 - 3. Can we do better?

Analyze Our First Algorithm

- Is the algorithm correct?
 - Yes, we simply follow the definition of Fibonacci numbers
- How fast is the algorithm?
 - If we let the run time of fib(n) be T(n), then we can formulate

$$T(n) = T(n-1) + T(n-2) + 3 \approx 1.6^n$$

- ► $T(200) \ge 2^{139}$
- The world fastest computer , which can run 2⁵⁶ instructions per second (93 Peta FLOPS, Peta=10¹5) , will take 2⁸³ seconds to compute. (2⁸³ seconds = 3 × 10⁸ billion years, Sun turns into a red giant star in 4 to 5 billion years, the Universe is about 13.82 billion years old)
- Can Moose's law, which predicts that CPU get 1.6 times faster each year, solve our problem?
- No, because the time needed to compute fib(n) also have the same "growth" rate
 - if we can compute fib(100) in exactly a year,
 - then in the next year, we will still spend a year to compute fib(101)
 - if we want to compute fib(200) within a year, we need to wait for 100 years.

Improve Our First Algorithm

- Can we do better?
- Yes, because many computations in the previous algorithm are repeated.

Algorithm 3.2: fib(n)

comment: Initially we create an array $A[0 \cdots n]$

$$A[0] \leftarrow 0, A[1] \leftarrow 1$$

for $i = \{2 \cdots n\}$
do $A[i] = A[i-1] + A[i-2]$
return $(A[n])$

Theoretical analysis of time efficiency

- Provide machine independent measurements
- Estimate the bottleneck of the algorithm
- ► The size of the input increases → algorithms run longer ⇒. Typically we are interested in how efficiency scales w.r.t. input size
- To measure the running time, we could
 - 1. count all operations executed.
 - 2. or determine the number of the **basic operation** as a function of **input size**
- Basic operation: the operation that contributes most towards the running time

Orders of Growth

- Some of the commonly seen functions representing the number of the basic operation C(n) =
 - 1. n2. n^2 3. n^3 4. $\log_{10}(n)$ 5. $n \log_{10}(n)$ 6. $\log_{10}^2(n)$ 7. \sqrt{n} 8. 2^n 9. n!
- Can you order them by their growth rate?

Orders of Growth

— .	c . •	-			
Lest	tunctions	lising	SOME	v_{a}	IIAC
ICJU	runctions	using	JOINC	vai	ucs

n	n^2	n^3	2^n	n!
10	10^{2}	10^{3}	1024	3.6×10^6
100	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
1000	10^{6}	10^{9}	1.1×10^{301}	
10000	10^{8}	$10^{1}2$		

n	$\log_{10}(n)$	$n\log_{10}(n)$	$\log_{10}^2(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

(see Weiss pg 203)

Now, we can order the functions by their growth rate $\log_{10}(n) < \log_{10}^2(n) < \sqrt{n} < n < n \log_{10}(n) < n^2 < n^3 < 2^n < n!$

Example: Maximum contiguous subsequence sum

Don't play: 0 gain

i	price	delta
1	886	0
2	890	4
3	880	-10
4	890	10
5	899	9
6	911	12
7	903	-8
8	913	10
9	920	7
10	924	4
11	927	3
12	921	-6
13	919	-2
14	887	-32
15	902	15

How is payoff computed for start=5 and end=12? For start=7 and end=10?

Several names for the Problem

- Maximum contiguous subsequence sum (textbook)
- Maximum Subarray (wikipedia)
- Find start and end time with largest payoff out of all possible

Find a Solution

- Input is the array delta[]
- Output: (start, end, payoff) such that payoff is as large as possible
- Can optionally *not invest* for no payoff; return (-1,-1,0)

Algorithm 1: Brute Force

```
maxSubsequenceCube(int A[])
ſ
  bestPayoff = 0
  bestStart = -1
  bestEnd = -1
  for start=0 to A.length-1 {
    for end=start to A.length-1 {
      currentPayoff = 0
      for i=start to end {
        currentPayoff += A[i]
      }
      if(currentPayoff > bestPayoff){
        bestPayoff = currentPayoff
        bestStart = start
        bestEnd = end
      }
    }
  }
  return bestPayoff, bestStart, bestEnd
}
```

- A[] contains deltas
- Try every possible start and end (outer loops)
- Calculate increase from start to end
- Track the best seen
- Complexity?
- Anything better

```
maxSubsequenceQuad(int A[]){
  B = new array size A.length
  B[0] = A[0]
  for i=1 to B.length-1
    B[i] = B[i-1] + A[i]
  best = 0
  bestStart = -1
  bestEnd = -1
  for start=0 to A.length-1 {
    for end=start to A.length-1 {
      current = B[end] - B[start]
      if(current > best){
        best = current
        bestStart = start
        bestEnd = end
      }
    }
  }
  return best, bestStart, bestEnd
}
```

- Initially convert deltas in A to global prices in B
- First price doesn't matter as interested in changes
- Try every start and end
- Easy to calculate currentPayoff
- Memory overhead?

A Helpful Property

Proposition: The shortest maximum subsequence beginning at start and finishing at end contains no point mid between them with a lower value than start.

Proof by Contradiction:

- Suppose shortest max subsequence exists, looks like picture.
- x must be lower than end, o/w could form a shorter maximum subsequence start to x
- But if mid is lower then start, sequence mid to end has a larger increase than start to end.

Contradiction \Box

Consequence: If mid drops below start, reset start to mid Create a faster algorithm based on this property.

Algorithm 3: Scan

```
maxSubsequenceLinear(int A[]){
  best = 0
  current = 0
  bestStart = -1
  bestEnd = -1
  start = 0
  for end=0 to A.length-1 {
    current += A[end]
    if(current > best){
      best = current
      bestStart = start
      bestEnd = end
    }
    else if(current < 0){</pre>
      start = end+1;
      current = 0;
    }
  }
  return best, bestStart, bestEnd;
}
```

- ► A[] contains deltas
- When sum current falls below zero, move start to end and reset
- Single pass over entire array

Comparisons

Given that array A has n elements,

- ▶ maxSubsequenceCube(): triply nested loops over entire array, $O(n^3)$
- \blacktriangleright maxSubsequenceQuad(): doubly nested loops over entire array, $O(n^2)$
- maxSubsequenceLinear(): single loop over entire array, O(n)

Intuition: for large arrays, maxSubsequenceLinear() will produce answers faster

- Lazy computer engineers do generics
- Lazy computer engineers do recursion (with care!)
- Lazy computer theoreticians do asymptotic notation

- It is not easy to be lazy; you need to try very hard!
- Read: Chapter 5
- ► Next week: More Big-O, List, Stacks, Queues