
CS311 Data Structures
Lecture 01 — Introduction

Jyh-Ming Lien

June 3, 2018



(Abstract) Data Structures?

I What are they?

I Why do you have to learn data structures?

I Where will it be used (e.g. in CS 483)?



How to be a good computer engineer?

I Good engineers are lazy, otherwise
I every door in a building
I every light switch
I every power outlet
I every screw
I ... would be different

I Lazy engineers spent minimum effort to solve a problem
I never reinvent the wheel
I never start from scratch
I always reuse (but don’t steal) existing tools.

I Lazy computer engineers write minimum code to solve a problem

I However, in CS 310, we start our code from scratch so we can learn

I Today’s topic: How to become a lazy computer engineer?
I Lazy computer engineers use generics
I Lazy computer engineers use recursion
I Lazy computer theoreticians use asymptotic notation





Generic Linked List

I What is a list (of integers)?

I Why do we need a linked list?

I What are the functions that we normally need to manipulate a list?

I Given an object x, how do we check if x is in the list? (we call this
function, “find(x)”)



Generic Linked List

I Now, what do I do if I need a list of strings? Do I need to re-design
the whole list?

I But I am lazy, so what should I do?

I Approach 1:

I Approach 2:



Find Max



Find Max



Recursion

I Fibonacci numbers fib(n):

fib(n) =

 0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) if n > 1

(1)

I Example: The first 10 Fibonacci numbers are:
{0, 1, , , , , , , , }



Our First Algorithm

I Problem: What is fib(200)? What about fib(n), where n is any
positive integer?

Algorithm 3.1: fib(n)

if n = 0
then return (0)

if n = 1
then return (1)

return (fib(n− 1) + fib(n− 2))

I Questions that we should ask ourselves.

1. Is the algorithm correct?
2. What is the running time of our algorithm?
3. Can we do better?



Analyze Our First Algorithm

I Is the algorithm correct?
I Yes, we simply follow the definition of Fibonacci numbers

I How fast is the algorithm?
I If we let the run time of fib(n) be T (n), then we can formulate

T (n) = T (n− 1) + T (n− 2) + 3 ≈ 1.6n

I T (200) ≥ 2139

I The world fastest computer , which can run 256 instructions per
second (93 Peta FLOPS, Peta=1015) , will take 283 seconds to
compute. (283 seconds = 3× 108 billion years, Sun turns into a red
giant star in 4 to 5 billion years, the Universe is about 13.82 billion
years old)

I Can Moose’s law, which predicts that CPU get 1.6 times faster each
year, solve our problem?

I No, because the time needed to compute fib(n) also have the same
“growth” rate

I if we can compute fib(100) in exactly a year,
I then in the next year, we will still spend a year to compute fib(101)
I if we want to compute fib(200) within a year, we need to wait for

100 years.



Improve Our First Algorithm

I Can we do better?

I Yes, because many computations in the previous algorithm are
repeated.

Algorithm 3.2: fib(n)

comment: Initially we create an array A[0 · · ·n]

A[0]← 0, A[1]← 1
for i = {2 · · ·n}
do A[i] = A[i− 1] + A[i− 2]

return (A[n])



Theoretical analysis of time efficiency

I Provide machine independent measurements

I Estimate the bottleneck of the algorithm

I The size of the input increases → algorithms run longer ⇒.
Typically we are interested in how efficiency scales w.r.t. input size

I To measure the running time, we could

1. count all operations executed.
2. or determine the number of the basic operation as a function of

input size

I Basic operation: the operation that contributes most towards the

running time



Orders of Growth

I Some of the commonly seen functions representing the number of
the basic operation C(n) =

1. n
2. n2

3. n3

4. log10(n)
5. n log10(n)
6. log2

10(n)
7.
√
n

8. 2n

9. n!

I Can you order them by their growth rate?



Orders of Growth

I Test functions using some values

n n2 n3 2n n!

10 102 103 1024 3.6× 106

100 104 106 1.3× 1030 9.3× 10157

1000 106 109 1.1× 10301

10000 108 1012

n log10(n) n log10(n) log2
10(n)

√
n

10 1 10 1 3.16

100 2 200 4 10

1000 3 3000 9 31.6

10000 4 40000 16 100

(see Weiss pg 203)

I Now, we can order the functions by their growth rate
log10(n) < log2

10(n) <
√
n < n < n log10(n) < n2 < n3 < 2n < n!



Example: Maximum contiguous subsequence sum

Don’t play: 0 gain



How Would you find Best Increase?

i price delta
1 886 0
2 890 4
3 880 -10
4 890 10
5 899 9
6 911 12
7 903 -8
8 913 10
9 920 7

10 924 4
11 927 3
12 921 -6
13 919 -2
14 887 -32
15 902 15

How is payoff computed for
start=5 and end=12?
For start=7 and end=10?

Several names for the Problem

I Maximum contiguous subsequence sum
(textbook)

I Maximum Subarray (wikipedia)

I Find start and end time with largest
payoff out of all possible

Find a Solution

I Input is the array delta[]

I Output: (start, end, payoff) such
that payoff is as large as possible

I Can optionally not invest for no payoff;
return (-1,-1,0)

http://en.wikipedia.org/wiki/Maximum_subarray_problem


Algorithm 1: Brute Force

maxSubsequenceCube(int A[])

{

bestPayoff = 0

bestStart = -1

bestEnd = -1

for start=0 to A.length-1 {

for end=start to A.length-1 {

currentPayoff = 0

for i=start to end {

currentPayoff += A[i]

}

if(currentPayoff > bestPayoff){

bestPayoff = currentPayoff

bestStart = start

bestEnd = end

}

}

}

return bestPayoff, bestStart, bestEnd

}

I A[] contains deltas

I Try every possible start and
end (outer loops)

I Calculate increase from start

to end

I Track the best seen

I Complexity?

I Anything better



Algorithm 2 Alternative: Convert to global Prices

maxSubsequenceQuad(int A[]){

B = new array size A.length

B[0] = A[0]

for i=1 to B.length-1

B[i] = B[i-1] + A[i]

best = 0

bestStart = -1

bestEnd = -1

for start=0 to A.length-1 {

for end=start to A.length-1 {

current = B[end] - B[start]

if(current > best){

best = current

bestStart = start

bestEnd = end

}

}

}

return best, bestStart, bestEnd

}

I Initially convert deltas in A to
global prices in B

I First price doesn’t matter as
interested in changes

I Try every start and end

I Easy to calculate
currentPayoff

I Memory overhead?



A Helpful Property

Proposition: The shortest maximum subsequence beginning at start
and finishing at end contains no point mid between them with a lower
value than start.

Proof by Contradiction:

I Suppose shortest max
subsequence exists, looks like
picture.

I x must be lower than end, o/w
could form a shorter maximum
subsequence start to x

I But if mid is lower then start,
sequence mid to end has a
larger increase than start to
end.

Contradiction

Consequence: If mid drops below
start, reset start to mid

Create a faster algorithm based on
this property.



Algorithm 3: Scan

maxSubsequenceLinear(int A[]){

best = 0

current = 0

bestStart = -1

bestEnd = -1

start = 0

for end=0 to A.length-1 {

current += A[end]

if(current > best){

best = current

bestStart = start

bestEnd = end

}

else if(current < 0){

start = end+1;

current = 0;

}

}

return best,bestStart,bestEnd;

}

I A[] contains deltas

I When sum current falls below
zero, move start to end and
reset

I Single pass over entire array



Max Subsequence Algorithms Synopsis

Comparisons
Given that array A has n elements,

I maxSubsequenceCube(): triply nested loops over entire array,
O(n3)

I maxSubsequenceQuad(): doubly nested loops over entire array,
O(n2)

I maxSubsequenceLinear(): single loop over entire array, O(n)

Intuition: for large arrays, maxSubsequenceLinear() will produce
answers faster



Conclusion

I Lazy computer engineers do generics

I Lazy computer engineers do recursion (with care!)

I Lazy computer theoreticians do asymptotic notation

I It is not easy to be lazy; you need to try very hard!

I Read: Chapter 5

I Next week: More Big-O, List, Stacks, Queues


	Generics

