CS311 Data Structures
 Lecture 01 - Introduction

Jyh-Ming Lien

June 3, 2018

(Abstract) Data Structures?

- What are they?
- Why do you have to learn data structures?
- Where will it be used (e.g. in CS 483)?

How to be a good computer engineer?

- Good engineers are lazy, otherwise
- every door in a building
- every light switch
- every power outlet
- every screw
- ... would be different
- Lazy engineers spent minimum effort to solve a problem
- never reinvent the wheel
- never start from scratch
- always reuse (but don't steal) existing tools.
- Lazy computer engineers write minimum code to solve a problem
- However, in CS 310, we start our code from scratch so we can learn
- Today's topic: How to become a lazy computer engineer?
- Lazy computer engineers use generics
- Lazy computer engineers use recursion
- Lazy computer theoreticians use asymptotic notation

Generic Linked List

- What is a list (of integers)?
- Why do we need a linked list?
- What are the functions that we normally need to manipulate a list?
- Given an object x, how do we check if x is in the list? (we call this function, "find(x)")

Generic Linked List

- Now, what do I do if I need a list of strings? Do I need to re-design the whole list?
- But I am lazy, so what should I do?
- Approach 1:
- Approach 2:

Find Max

public static void main(String [] args)

* Test findMax on Shape and String objects.
return arr[maxIndex];
> /**
* Re
* Pr
*/
public
\{

$$
\begin{aligned}
& \text { System.out.println(findMax(sh1)); } \\
& \text { System.out.println(findMax(st1)); }
\end{aligned}
$$

Find Max

Recursion

- Fibonacci numbers fib(n):

$$
\operatorname{fib}(n)= \begin{cases}0 & \text { if } n=0 \tag{1}\\ 1 & \text { if } n=1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { if } n>1\end{cases}
$$

- Example: The first 10 Fibonacci numbers are: $\{0,1$, \qquad
\qquad
\qquad , , _ , \qquad
\qquad , __ $\}$

Our First Algorithm

- Problem: What is $\mathrm{fib}(200)$? What about $\mathrm{fib}(n)$, where n is any positive integer?
Algorithm 3.1: fib(n)
if $n=0$
then return (0)
if $n=1$ then return (1)
return $(\operatorname{fib}(n-1)+\operatorname{fib}(n-2))$
- Questions that we should ask ourselves.

1. Is the algorithm correct?
2. What is the running time of our algorithm?
3. Can we do better?

Analyze Our First Algorithm

- Is the algorithm correct?
- Yes, we simply follow the definition of Fibonacci numbers
- How fast is the algorithm?
- If we let the run time of $\operatorname{fib}(n)$ be $T(n)$, then we can formulate

$$
T(n)=T(n-1)+T(n-2)+3 \approx 1.6^{n}
$$

- $T(200) \geq 2^{139}$
- The world fastest computer, which can run 2^{56} instructions per second (93 Peta FLOPS, Peta $=10^{1} 5$), will take 2^{83} seconds to compute. (2^{83} seconds $=3 \times 10^{8}$ billion years, Sun turns into a red giant star in 4 to 5 billion years, the Universe is about 13.82 billion years old)
- Can Moose's law, which predicts that CPU get 1.6 times faster each year, solve our problem?
- No, because the time needed to compute $\operatorname{fib}(n)$ also have the same "growth" rate
- if we can compute fib(100) in exactly a year,
- then in the next year, we will still spend a year to compute fib(101)
- if we want to compute $\mathrm{fib}(200)$ within a year, we need to wait for 100 years.

Improve Our First Algorithm

- Can we do better?
- Yes, because many computations in the previous algorithm are repeated.

```
Algorithm 3.2: fib( \(n\) )
comment: Initially we create an array \(A[0 \cdots n]\)
\(A[0] \leftarrow 0, A[1] \leftarrow 1\)
for \(i=\{2 \cdots n\}\)
    do \(A[i]=A[i-1]+A[i-2]\)
return ( \(A[n]\) )
```


Theoretical analysis of time efficiency

- Provide machine independent measurements
- Estimate the bottleneck of the algorithm
- The size of the input increases \rightarrow algorithms run longer \Rightarrow. Typically we are interested in how efficiency scales w.r.t. input size
- To measure the running time, we could

1. count all operations executed.
2. or determine the number of the basic operation as a function of input size

- Basic operation: the operation that contributes most towards the running time

Orders of Growth

- Some of the commonly seen functions representing the number of the basic operation $C(n)=$

1. n
2. n^{2}
3. n^{3}
4. $\log _{10}(n)$
5. $n \log _{10}(n)$
6. $\log _{10}^{2}(n)$
7. \sqrt{n}
8. 2^{n}
9. n !

- Can you order them by their growth rate?

Orders of Growth

- Test functions using some values

n	n^{2}	n^{3}	2^{n}	$n!$
10	10^{2}	10^{3}	1024	3.6×10^{6}
100	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
1000	10^{6}	10^{9}	1.1×10^{301}	
10000	10^{8}	$10^{1} 2$		

n	$\log _{10}(n)$	$n \log _{10}(n)$	$\log _{10}^{2}(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

(see Weiss pg 203)

- Now, we can order the functions by their growth rate $\log _{10}(n)<\log _{10}^{2}(n)<\sqrt{n}<n<n \log _{10}(n)<n^{2}<n^{3}<2^{n}<n$!

Example: Maximum contiguous subsequence sum

Don't play: 0 gain

How Would you find Best Increase?

i	price	delta
1	886	0
2	890	4
3	880	-10
4	890	10
5	899	9
6	911	12
7	903	-8
8	913	10
9	920	7
10	924	4
11	927	3
12	921	-6
13	919	-2
14	887	-32
15	902	15

How is payoff computed for start=5 and end=12?
For start=7 and end=10?

Several names for the Problem

- Maximum contiguous subsequence sum (textbook)
- Maximum Subarray (wikipedia)
- Find start and end time with largest payoff out of all possible

Find a Solution

- Input is the array delta[]
- Output: (start, end, payoff) such that payoff is as large as possible
- Can optionally not invest for no payoff; return ($-1,-1,0$)

Algorithm 1: Brute Force

```
maxSubsequenceCube(int A[])
{
    bestPayoff = 0
    bestStart = -1
    bestEnd = -1
    for start=0 to A.length-1 {
        for end=start to A.length-1 {
            currentPayoff = 0
            for i=start to end {
                currentPayoff += A[i]
            }
            if(currentPayoff > bestPayoff){
                bestPayoff = currentPayoff
                bestStart = start
                bestEnd = end
            }
        }
    }
    return bestPayoff, bestStart, bestEnd
}
```

- A[] contains deltas
- Try every possible start and end (outer loops)
- Calculate increase from start to end
- Track the best seen
- Complexity?
- Anything better

Algorithm 2 Alternative: Convert to global Prices

```
maxSubsequenceQuad(int A[]){
    B = new array size A.length
    B[0] = A[0]
    for i=1 to B.length-1
        B[i] = B[i-1] + A[i]
    best = 0
    bestStart = -1
    bestEnd = -1
    for start=0 to A.length-1 {
        for end=start to A.length-1 {
            current = B[end] - B[start]
            if(current > best){
            best = current
            bestStart = start
            bestEnd = end
            }
        }
    }
    return best, bestStart, bestEnd
}
```

- Initially convert deltas in A to global prices in B
- First price doesn't matter as interested in changes
- Try every start and end
- Easy to calculate currentPayoff
- Memory overhead?

A Helpful Property

Proposition: The shortest maximum subsequence beginning at start and finishing at end contains no point mid between them with a lower value than start.

Proof by Contradiction:

- Suppose shortest max subsequence exists, looks like picture.
- x must be lower than end, o/w could form a shorter maximum subsequence start to x
- But if mid is lower then start, sequence mid to end has a larger increase than start to end.

Contradiction \square

Consequence: If mid drops below start, reset start to mid Create a faster algorithm based on this property.

Algorithm 3: Scan

```
maxSubsequenceLinear(int A[]){
    best = 0
    current = 0
    bestStart = -1
    bestEnd = -1
    start = 0
    for end=0 to A.length-1 {
        current += A[end]
        if(current > best){
            best = current
            bestStart = start
            bestEnd = end
        }
        else if(current < 0){
            start = end+1;
            current = 0;
        }
    }
    return best,bestStart,bestEnd;
}
```

- A [] contains deltas
- When sum current falls below zero, move start to end and reset
- Single pass over entire array

Max Subsequence Algorithms Synopsis

Comparisons

Given that array A has n elements,

- maxSubsequenceCube(): triply nested loops over entire array, $O\left(n^{3}\right)$
- maxSubsequenceQuad(): doubly nested loops over entire array, $O\left(n^{2}\right)$
- maxSubsequenceLinear (): single loop over entire array, $O(n)$ Intuition: for large arrays, maxSubsequenceLinear() will produce answers faster

Conclusion

- Lazy computer engineers do generics
- Lazy computer engineers do recursion (with care!)
- Lazy computer theoreticians do asymptotic notation
- It is not easy to be lazy; you need to try very hard!
- Read: Chapter 5
- Next week: More Big-O, List, Stacks, Queues

