
CS311 Data Structures
Lecture 02 — BigO

Jyh-Ming Lien

June 4, 2018



Logistics

At Home

I Read Weiss Ch 1-4: Java Review

I Read Weiss Ch 5: Big-O

I Get your java environment set up

Goals

I Max Subarray problem (Code provided on Course webpage.)

I Review Big O and other asymptotic notations



How Fast/Big?

Review
Algorithmic time/space complexity
depend on problem size

I Problem size: Often have some
input parameter like n or N or
(M,N)

I Describe both time and space
complexity as functions of those
parameters

I Example: For an input array of
size N , the maximum element
can be found in 5 ∗N + 3
operations while the array can
be sorted in 2N2 + 11N + 7
operations.

Big O
Big-O notation: upper bounding
how fast functions grow based on
input T (n) is O(F (n)) if there are
positive constants c and n0 such
that

I When n ≥ n0

I T (n) ≤ cF (n)

Bottom line:

I If T (n) is O(F (n))

I Then F (n) grows as fast or
faster than T (n)



Show It

Show

f(n) = 2n2 + 3n+ 2 is O(n3)

I Pick c = 0.5 and n0 = 6

n f(n) 0.5n3

0 2 0
1 7 0.5
2
3
4
5
6
7



Show It

Show

f(n) = 2n2 + 3n+ 2 is O(n3)

I Pick c = 0.5 and n0 = 6

n f(n) 0.5n3

0 2 0
1 7 0.5
2 16 4
3 29 13
4 46 32
5 67 62
6 92 108
7 121 171

● ● ● ●
●

●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

0

100

200

300

400

500

0.0 2.5 5.0 7.5 10.0
n

V
al

ue

Function ● ●0.5*n^3 2*n^2+3*n+2

How about the opposite? Show

g(n) = n3 is Ω(2n2 + 3n + 2)



Basic Rules

I Constant additions disappear
I N + 5 is O(N)

I Constant multiples disappear
I 0.5N + 2N + 7 is O(N)

I Non-constant multiples multiply:
I Doing a constant operation 2N times is O(N)
I Doing a O(N) operation N/2 times is O(N2)
I Need space for half an array with N elements is O(N) space

overhead

I Function calls are not free (including library calls)
I Call a function which performs 10 operations is O(1)
I Call a function which performs N/3 operations is O(N)
I Call a function which copies object of size N takes O(N) time and

uses O(N) space



Growth Ordering of Some Functions

Name Leading Term Big-Oh Example
Constant 1, 5, c O(1) 2.5, 85, 2c
Log-Log log(log(n)) O(log log n) 10 + (log log n+ 5)
Log log(n) O(log(n)) 5 log n+ 2

log(n2)
Linear n O(n) 2.4n+ 10

10n+ log(n)
N-log-N n log n O(n log n) 3.5n log n+ 10n+ 8
Super-linear n1.x O(n1.x) 2n1.2 + 3n log n− n+ 2
Quadratic n2 O(n2) 0.5n2 + 7n+ 4

n2 + n log n
Cubic n3 O(n3) 0.1n3 + 8n1.5 + log(n)
Exponential an O(2n) 8(2n)− n+ 2

O(10n) 100n500 + 2 + 10n

Factorial n! O(n!) 0.25n! + 10n100 + 2n2



Common Patterns

I Adjacent Loops Additive: 2× n is O(n)

for(int i=0; i<N; i++){

blah blah blah; //constant time operation

}

for(int j=0; j<N; j++){

yakkety yack; //another constant time operation

}

I Nested Loops Multiplicative usually polynomial
I 1 loop, O(n)
I 2 loops, O(n2)
I 3 loops, O(n3)

I Repeated halving usually involves a logarithm
I Binary search is O(logn)
I Fastest sorting algorithms are O(n logn)
I Proofs are harder, require solving recurrence relations

Lots of special cases so be careful



FIGS/Idealized Functions

Smallish Inputs Larger Inputs


	Big O and other notations

