CS311 Data Structures Lecture 02 — BigO

Jyh-Ming Lien

June 4, 2018

◆□ > <□ > < = > < = > < = > < = < ○ < ○</p>

Logistics

At Home

- Read Weiss Ch 1-4: Java Review
- Read Weiss Ch 5: Big-O
- Get your java environment set up

Goals

- Max Subarray problem (Code provided on Course webpage.)
- Review Big O and other asymptotic notations

Review

Algorithmic time/space complexity depend on problem size

- Problem size: Often have some input parameter like n or N or (M, N)
- Describe both time and space complexity as *functions* of those parameters
- Example: For an input array of size N, the maximum element can be found in 5 * N + 3 operations while the array can be sorted in 2N² + 11N + 7 operations.

Big O

Big-O notation: upper bounding how fast functions grow based on input T(n) is O(F(n)) if there are positive constants c and n_0 such that

- When $n \ge n_0$
- $\blacktriangleright T(n) \le cF(n)$

Bottom line:

- If T(n) is O(F(n))
- ► Then F(n) grows as fast or faster than T(n)

Show It

Show

$$f(n) = 2n^2 + 3n + 2$$
 is $O(n^3)$

▶ Pick
$$c = 0.5$$
 and $n_0 = 6$

n	f(n)	$0.5n^{3}$
0	2	0
1	7	0.5
2		
3		
4		
5		
6		
7		

Show It

Show

$$f(n) = 2n^2 + 3n + 2$$
 is $O(n^3)$

▶ Pick
$$c = 0.5$$
 and $n_0 = 6$

n	f(n)	$0.5n^{3}$
0	2	0
1	7	0.5
2	16	4
3	29	13
4	46	32
5	67	62
6	92	108
7	121	171

How about the opposite? Show

 $g(n) = n^3$ is $\Omega(2n^2 + 3n + 2)$

Basic Rules

- Constant additions disappear
 - N+5 is O(N)
- Constant multiples disappear
 - 0.5N + 2N + 7 is O(N)
- Non-constant multiples multiply:
 - Doing a constant operation 2N times is O(N)
 - Doing a O(N) operation N/2 times is $O(N^2)$
 - Need space for half an array with N elements is O(N) space overhead
- Function calls are not free (including library calls)
 - Call a function which performs 10 operations is O(1)
 - Call a function which performs N/3 operations is O(N)
 - Call a function which copies object of size N takes O(N) time and uses O(N) space

Name	Leading Term	Big-Oh	Example
Constant	1, 5, c	O(1)	2.5, 85, 2c
Log-Log	$\log(\log(n))$	$O(\log \log n)$	$10 + (\log \log n + 5)$
Log	$\log(n)$	$O(\log(n))$	$5\log n + 2$
			$\log(n^2)$
Linear	n	O(n)	2.4n + 10
			$10n + \log(n)$
N-log-N	$n\log n$	$O(n\log n)$	$3.5n\log n + 10n + 8$
Super-linear	$n^{1.x}$	$O(n^{1.x})$	$2n^{1.2} + 3n\log n - n + 2$
Quadratic	n^2	$O(n^2)$	$0.5n^2 + 7n + 4$
			$n^2 + n \log n$
Cubic	n^3	$O(n^3)$	$0.1n^3 + 8n^{1.5} + \log(n)$
Exponential	a^n	$O(2^n)$	$8(2^n) - n + 2$
		$O(10^{n})$	$100n^{500} + 2 + 10^n$
Factorial	n!	O(n!)	$0.25n! + 10n^{100} + 2n^2$

Common Patterns

```
> Adjacent Loops Additive: 2 × n is O(n)
for(int i=0; i<N; i++){
    blah blah blah; //constant time operation
}
for(int j=0; j<N; j++){
    yakkety yack; //another constant time operation
}</pre>
```

Nested Loops Multiplicative usually polynomial

- ▶ 1 loop, *O*(*n*)
- ▶ 2 loops, $O(n^2)$
- ▶ 3 loops, $O(n^3)$
- Repeated halving usually involves a logarithm
 - ▶ Binary search is $O(\log n)$
 - ► Fastest sorting algorithms are O(n log n)
 - Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

FIGS/Idealized Functions

Smallish Inputs

Larger Inputs

