CS311 Data Structures
 Lecture 02 - BigO

Jyh-Ming Lien

June 4, 2018

Logistics

At Home

- Read Weiss Ch 1-4: Java Review
- Read Weiss Ch 5: Big-O
- Get your java environment set up

Goals

- Max Subarray problem (Code provided on Course webpage.)
- Review Big O and other asymptotic notations

How Fast/Big?

Review

Algorithmic time/space complexity depend on problem size

- Problem size: Often have some input parameter like n or N or (M, N)
- Describe both time and space complexity as functions of those parameters
- Example: For an input array of size N, the maximum element can be found in $5 * N+3$ operations while the array can be sorted in $2 N^{2}+11 N+7$ operations.

Big 0

Big-O notation: upper bounding how fast functions grow based on input $T(n)$ is $O(F(n))$ if there are positive constants c and n_{0} such that

- When $n \geq n_{0}$
- $T(n) \leq c F(n)$

Bottom line:

- If $T(n)$ is $O(F(n))$
- Then $F(n)$ grows as fast or faster than $T(n)$

Show It

Show

$$
f(n)=2 n^{2}+3 n+2 \text { is } O\left(n^{3}\right)
$$

- Pick $c=0.5$ and $n_{0}=6$

n	$f(n)$	$0.5 n^{3}$
0	2	0
1	7	0.5
2		
3		
4		
5		
6		
7		

Show It

Show

$$
f(n)=2 n^{2}+3 n+2 \text { is } O\left(n^{3}\right)
$$

- Pick $c=0.5$ and $n_{0}=6$

n	$f(n)$	$0.5 n^{3}$
0	2	0
1	7	0.5
2	16	4
3	29	13
4	46	32
5	67	62
6	92	108
7	121	171

How about the opposite? Show

$$
g(n)=n^{3} \text { is } \Omega\left(2 n^{2}+3 n+2\right)
$$

Basic Rules

- Constant additions disappear
- $N+5$ is $O(N)$
- Constant multiples disappear
- $0.5 N+2 N+7$ is $O(N)$
- Non-constant multiples multiply:
- Doing a constant operation $2 N$ times is $O(N)$
- Doing a $O(N)$ operation $N / 2$ times is $O\left(N^{2}\right)$
- Need space for half an array with N elements is $O(N)$ space overhead
- Function calls are not free (including library calls)
- Call a function which performs 10 operations is $O(1)$
- Call a function which performs $N / 3$ operations is $O(N)$
- Call a function which copies object of size N takes $O(N)$ time and uses $O(N)$ space

Growth Ordering of Some Functions

Name	Leading Term	Big-Oh	Example
Constant	$1,5, c$	$O(1)$	$2.5,85,2 c$
Log-Log	$\log (\log (n))$	$O(\log \log n)$	$10+(\log \log n+5)$
Log	$\log (n)$	$O(\log (n))$	$5 \log n+2$
			$\log \left(n^{2}\right)$
Linear	n	$O(n)$	$2.4 n+10$
N-log-N	$n \log n$	$O(n \log n)$	$10 n+\log (n)$
Super-linear	$n^{1 . x}$	$O\left(n^{1 . x}\right)$	$2 n^{1.2}+3 n+10 n+8$
Quadratic	n^{2}	$O\left(n^{2}\right)$	$0.5 n^{2}+7 n+4-n+2$
		$O\left(n^{3}\right)$	$n^{2}+n \log n$
Cubic	n^{3}	$O\left(2^{n}\right)$	$8\left(2^{n}\right)-8 n^{1.5}+\log (n)$
Exponential	a^{n}	$O\left(10^{n}\right)$	$100 n^{500}+2+10^{n}$
		$O(n!)$	$0.25 n!+10 n^{100}+2 n^{2}$

Common Patterns

- Adjacent Loops Additive: $2 \times n$ is $O(n)$

```
for(int i=O; i<N; i++){
    blah blah blah; //constant time operation
}
for(int j=0; j<N; j++){
    yakkety yack; //another constant time operation
}
```

- Nested Loops Multiplicative usually polynomial
- 1 loop, $O(n)$
- 2 loops, $O\left(n^{2}\right)$
- 3 loops, $O\left(n^{3}\right)$
- Repeated halving usually involves a logarithm
- Binary search is $O(\log n)$
- Fastest sorting algorithms are $O(n \log n)$
- Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

FIGS/Idealized Functions

Smallish Inputs

Larger Inputs

