CS311 Data Structures
Lecture 03 — Stack, Queue

Jyh-Ming Lien

September 10, 2017
Stack
 Introduction
 Implementation
 Applications

Queue
 Introduction
 Implementation
 Applications
What is a stack?

- **Last In, First Out (LIFO)**
- In *Java*, it extends class *Vector*
- **Operations**
 - pop
 - push
 - peek
 - empty

<table>
<thead>
<tr>
<th>top</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Implementation

- Using Array List
 - pop
 - push
 - peek
 - empty

- Using Linked list
 - pop
 - push
 - peek
 - empty
Applications

- Check balancing
 - \{ (< > [{ < > }]) { } \} vs. \{ (< [{ < > }]) } \{ \}

- Postfix calculation
 - $6523 + 8 \ast +3 + \ast = 288$

- Infix to Postfix Conversion
 - $a + b \ast c + (d \ast e + f) \ast g \rightarrow abc \ast +de \ast f + g \ast +$

- Call stack
 - fib(4)=

- Tree traversal — preorder traversal
- Graph search — depth first search
- ...

What is a queue?

- First In, First Out (FIFO)
- In *java*, it is an interface. `LinkedList` implements this interface.
- Operations
 - enqueue
 - dequeue
 - peek
 - empty
Queue can be implemented easily by linked list

Using Array List (circular array)

- enqueue
- dequeue
- peek
- empty

(image from http://www.javaworld.com/)
Flocking system

- a coordinated group (e.g., school of fish, flock of bird, crowd)
- simulation is based on very simple local rules
 - separation
 - coherence
 - alignment

(http://cmol.nbi.dk/models/boids)

- Question: how do you get a list of neighboring agents efficiently?
 - a brute force method will take $O(n)$ time for each of the n agents
- Answer: Using a regular grid and a queue.