Logistics

Reading

- Weiss Ch 20: Hash Table
- Weiss Ch 6.7-8: Maps/Sets

Goals Today

- Hash Functions
- Separate Chaining In Hash Tables
- Closed Hashing
A Small Problem

- Small office building, 50 offices
- Office numbers 0-49
- Building owner wants to track which offices are occupied along with names of occupants

 Office 32 Unoccupied
 Office 43 Fakebook Inc
 Office 19 Unoccupied
 Office 9 Banana Corp

- **Suggest** a standard data structure and how one would manipulate it
Arrays Rock, except…

- Small office building, 50 offices
- Office numbers based on floor
 - Floor 1: 101, 102, 103,…,110
 - Floor 2: 201, 202, 203,…,210
- Building owner wants to track which are occupied/names of occupants
 - Office 402 Unoccupied
 - Office 503 Fakebook Inc
 - Office 209 Unoccupied
 - Office 109 Banana Corp
- Adapt the earlier approach with arrays: difficulties?

How about **Reverse Lookup**:
- ”Fakebook Inc” → Office 403
- ”Banana Corp” → Office 109
Hash Tables Surmount this difficulty

- Hash Tables \approx Dictionaries (Python)
- Also called associative arrays, sometimes maps
- Store objects in an array in a retrievable way
- Involves computing a number for objects to be stored
- Have $O(1)$ add(x)/remove(x) (sort of...)
Hash Tables are Simple

Succinctly

- Have \(x \) (object) to put in a hash table
- Compute integer \(xhc \) from \(x \)
 (hash code for \(x \) computed via a hash function provided by class of \(x \))
- Put \(x \) in array \(hta \) at index \(xhc \): \(hta[xhc] = x \);
- \(x \) is now in the hash table

Things to consider

1. How do you compute \(xhc \)? Where should that code exist?
2. What if \(xhc \) is beyond of \(hta.length \)?
3. What if \(hta[xhc] \) is occupied?
Every object in Java has a `hashCode()` method

- Why?
- How are hash codes computed by default?
- Link to official docs

Override `hashCode()`

- For your own classes, override default `hashCode()`
- Compute hash based on the internal data of an object
- Return an integer ”representing” the object
- Class is now ”hashable”
Computing a Hash Code

Hash Code from Hash Function

- An integer computed for an object
- Computed via a function provided by an object:
 \[
 \text{int } hc = \text{thing}.hashCode();
 \]

Hash Contract

- If \(x.equals(y)\) is true, then \(x.hashCode()==y.hashCode()\)
- Equal object \(\rightarrow\) Same hash code
- Important: If \(x.equals(y)\) is false, hash codes may be different or the same
 - May be \(x.hashCode()==y.hashCode()\)
 - May be \(x.hashCode()!\=y.hashCode()\)
- Leads to \textit{collisions} in a hash table
1. Adhere to the Hash Contract
 - If \(x \) and \(y \) are equal, must have same hash code

2. Distribute different objects “fairly” across integers
 - If \(x \) and \(y \) not equal, try to make \(x\.hashCode() \) different from \(y\.hashCode() \)
 - Making hash codes different reduces collisions in hash tables

3. Compute \(x\.hashCode() \) as quickly as possible
 - Adding/looking up objects in a hash table requires computation of an object’s hash code
 - Reducing time spent on computing hash code improves performance

These three goals almost always involve tradeoffs
public int hashCode()

Ideas for hashCode() implementation of the following things:

Fundamental Types
- Integer
- Long
- Character
- Boolean
- Float
- Double

Custom Classes
- class Initials{
 char first, last;
}
- class Coord{
 int row, col;
}
Hash Codes for 64-bit Primitives

Straight from the Java class library source code

package java.lang;
public final class Double
 extends Number implements Comparable<Double>
{
 @Override
 public int hashCode() {
 return Double.hashCode(value);
 }

 public static int hashCode(double value) {
 long bits = doubleToLongBits(value);
 return (int)(bits ^ (bits >>> 32)); //^ is XOR
 }
}

Why XOR? What does (int)(a long number) do?
First Aggregate Example: String.hashCode()

class String {
 public int hashCode() {
 Returns a hash code for this string. The hash code for a
 String object is computed as

 \[s[0] \cdot 31^{(n-1)} + s[1] \cdot 31^{(n-2)} + \ldots + s[n-1] \]

 using int arithmetic, where \(s[i] \) is the \(i \)th character of
 the string, \(n \) is the length of the string, and \(^\wedge\) indicates
 exponentiation.
 }
}

Examples

> "a".hashCode() > String s = "Hash!";
97 > s.hashCode()
> "b".hashCode() > (31*31*31*31)*'H' + (31*31*31)*'a' +
98 > (31*31)*'s' + (31)*'h' + '!
> "ab".hashCode() > 69497011
3105 > "ba".hashCode()
> 69497011
3135
Polynomial Hash Code Tricks

String uses a polynomial hash code

\[a_0X^{n-1} + a_1X^{n-2} + a_2X^{n-3} + \cdots + a_{n-1}X^0 \]

31 is \(X \) in the above

- 31 is not special
- Early java used 37 instead

A Trick

Can regroup a polynomial of any degree

Example of regrouping degree 3 polynomial

\[a_0X^3 + a_1X^2 + a_2X^1 + a_3 \]

regrouped becomes

\[(((a_0)X + a_1)X + a_2)X + a_3 \]
Implementations

Slow: Original

\[s[0] \times 31^{(n-1)} + s[1] \times 31^{(n-2)} + \ldots + s[n-1] \]

```java
char s[];
public int hashCode() {
    int h = 0, i, n = s.length;
    for (i = 0; i < n; i++){
        h += s[i] * ((int) Math.pow(31, n-i-1));
    }
    return h;
}
```

Faster: Exploit Regrouping

\[\ldots(((s[0]) \times 31 + s[1]) \times 31 + s[2]) \times 31 + \ldots) \]

```java
char s[];
public int hashCode() {
    int h = 0, i;
    for (i = 0; i < s.length; i++) {
        h = 31 * h + s[i];
    }
    return h;
}
```

Examine parens carefully in expression
The Full Implementation uses Caching

Compute once, save for later

class String{
 private char[] str; // Chars of string
 private int hash; // Default to 0

 public int hashCode() {
 // Check if the hash has already been computed
 if(this.hash!=0 || this.str.length==0){
 return this.hash;
 }
 // Hasn’t been computed, compute and store
 for(int i=0; i < this.str.length; i++) {
 this.hash = 31 * this.hash + this.str[i];
 }
 return this.hash;
 }
}

Not exactly how java.util.String looks but it’s the general idea
public int hashCode()

Ideas for hashCode() implementation of the following things

Fundamental Types (Done)
- Integer
- Long
- Character
- Boolean
- Float
- Double

Container Types
- Integer []
- Double []
- String []
- ArrayList<T>
- LinkedList<T>
- class Flurb{
 int x;
 double y;
 String s;
 int [] a;
}
```java
class Flurb{
    int x;
    double y;
    String s;
    int [] a;

    public int hashCode(){
        int h = 0;
        h = h*31 + x;
        h = h*31 + (new Double(y)).hashCode();
        h = h*31 + s.hashCode();
        for(int i=0; i<a.length; i++){
            h = h*31 + a[i];
        }
        return h;
    }
}
```
Basic hashCode() Strategy

Poor man’s strategy: x.toString().hashCode()

More thoroughly ...

Fundamental Types

- All have a fixed size in bytes
- int has 4 bytes
- Convert bytes of intrinsic to 4 bytes
- If shorter than 4 bytes like Character, done
- If 8 bytes like Long,Double, use XOR to reduce 8 to 4 bytes

Container Types

- Use String approach
- Polynomial hash code of elements
- For each element compute its hash code
- Update polynomial hash code
- Treat fields as part of the sequence
Two equal objects must have the same `hashCode()` and as much as possible unequal objects should have differing hashcodes

Consequently, every class has a `hashCode()` method but should override it when overriding `equals()`

Fundamental types with 32 bits or less like `Integer` are their own hash codes

Fundamental types with more than 32 bits like `Long` can use XOR to combine 4-byte quantities to get a 32-bit hash

Aggregate data like `String` often uses polynomial codes to calculate hash codes which differ when the order of constituents changes.

The same approach is used for other containers and custom classes that need the order of elements reflected in their hashcodes
Hash Table Class So Far...

So far

▶ **Know:** how to use `int xhc = x.hashCode();`
▶ Simple Hash Set with `add(x)/contains(x)` has an array `hta`
▶ Put `x` in `hta[]` based on `xhc`

Answer

▶ What if `xhc` is out of bounds in `hta`?
▶ Unconditionally set `hta[xhc]` to `x` in `add(x)`?

class MyHashSet<T>{
 T hta[]; int size;
 boolean contains(T x){
 int xhc = x.hashCode();
 // If xhc out of bounds?
 xhc = ???;
 // Is this okay?
 return x.equals(this.hta[xhc]);
 }
 void add(T x){
 int xhc = x.hashCode();
 // If xhc out of bounds?
 xhc = ???;
 // Is this okay?
 this.hta[xhc] = x;
 this.size++;
 }
}

Getting Hash Codes in Bounds

- hta[] has a fixed size
- The hash code xhc can be any integer
- Take an absolute value of xhc if negative
- Use modulo to get xhc in bounds

```java
int n = hta.length;
hta[abs(xhc) % n] = x;
```

Note: For mathy reasons we’ll briefly discuss, usually make hash table size n a *prime number*
Pragmatic Collision Resolution: Separate Chaining

Motivation

- Put x in table at $hta[xhc]$
- **Problem**: What if $hta[xhc]$ is occupied?

Separate Chaining

Most of you recognize this problem can be solved simply

- Internal array contains lists
- Add x to the list at $hta[xhc]$

```java
public class HashTable<T>{
    private List<T> hta[];
    ...
```
Separate Chaining: Example

Code

```java
String[] sa1 = new String[] {
    "Chris", "Sam", "Beth", "Dan"
};

SeparateChainHS<String> h = new SeparateChainHS<String>(11);
for (String s : sa1) {
    h.add(s);
}
print(h.load());
// load = 4 / 11
// 0.36363636363636365
```

Load

\[
\text{load} = \frac{\text{item count}}{\text{array length}}
\]
Separate Chaining: Example

Code

String [] sa2 = new String[]{
 "Chris","Sam","Beth","Dan",
 "George","Kevin","Nikil",
 "Mark","Dana","Amy","Foo",
 "Spike","Jet","Ed"
};

SeparateChainHS<String> h =
 new SeparateChainHS<String>(11);

for(String s : sa2){
 h.add(s);
}

h.load();
// load = 14 / 11
// 1.2727272727272727

Load = 1.27
Implement Separate Chaining

- A Set has at most one copy of any element (no duplicates)
- Write add/remove/contains for SeparateChainingHS
- What are the time complexities of each method?

```java
public class SeparateChainingHS<T> {
    private List<T> hta[];
    private int itemCount;

    // Constructor, n is initial size of hta[]
    public SeparateChainingHS(int n) {
        this.itemCount = 0;
        this.hta = new List<T>[n];
        for (int i = 0; i < n; i++) {
            this.hta[i] = new LinkedList<T>();
        }
    }

    public void add(T x); // Add x if not already present
    public void remove(T x); // Remove x if present
    public boolean contains(T x); // Return true if x present, false o/w
}
```
Java’s built-in hash tables use it

- Simple to code
- Reasonably efficient
- `java.util.HashSet / HashMap / Hashtable` all use separate chaining

Analyses of methods are influenced by **Load**

\[
\text{load} = \frac{\text{item count}}{\text{array length}}
\]
add()
add(x) is $O(1)$ assuming adding to a list is $O(1)$

```java
int xhc = x.hashCode();
List l = hta[ abs(xhc) % hta.length ];
l.add(x);
```

remove()/contains()
- Assume fair hash function (distributes well)
- **Load** is the average number of things in each list in the array.
- remove(x)/contains(x) must potentially look through **Load**
 elements to see if x is present
- Therefore complexity $O(Load) = O(itemCount/arraySize)$
Alternatives to Separate Chaining

Separate Chaining works well but has some disadvantages

- Requires separate data structure (lists)
- Involves additional level of indirection: elements are two or three additional memory references away from the hash table array
- Adding requires memory allocation for nodes/lists

Alternative: Open Address Hashing

- Ban the use of lists in the hash table
- Store element references directly in hash table array
- Why do it this way?
- How can we handle collisions now?
Open Addressing

Basic Design

- Hash table elements stored in array `hta` (no auxiliary lists)
- **Probe a sequence** of entries for object

```plaintext
# Generic pseudocode for a probe sequence
pos = abs(x.hashCode() % hta.length);
repeat
    if hta[pos] is empty
       hta[pos] = x
       return
    else
       pos = someplace else
```

Design Issues

- Obvious *next* places to look after `pos`?
- How to indicate an entry is empty?
- Limits?
Linear Probing

Start with normal insertion position pos

```java
int pos = Math.abs(x.hashCode() % hta.length);
```

Try the following sequence until an empty array element is found

```
pos, pos+1, pos+2, pos+3, ... pos+i
```

Process of add(x) in hash table

```java
// General idea of linear probing sequence
pos = Math.abs(x.hashCode() % hta.length);
if hta[pos] empty, put x there
else if hta[(pos+1)] empty, put x there
else if hta[(pos+2)] empty, put x there
...
```

```java
// Insert x using linear probe sequence
public void add(T x)
```
Consequences of Open Address Hashing

With linear probing
- Can add(x) fail? Under what conditions?
- Code for contains(x)?
- How does remove(x) work?
Suppose `remove(X)` sets position to null

What are the booleans assigned to?

```java
h.remove(A); boolean b1 = h.contains(C);
h.remove(D); boolean b2 = h.contains(F);
h.remove(E); boolean b3 = h.contains(I);
```
Avoid Breaking Chains in Removal

- Don’t set removed records to null
- Use place-holders, in Weiss it’s HashSet.HashEntry

```java
private static class HashEntry {
    public Object element; // the element
    public boolean isActive; // false if marked deleted

    public HashEntry( Object e ) {
        this( e, true );
    }
    public HashEntry( Object e, boolean i ){
        element = e;
        isActive = i;
    }
}
```

Explore weiss/code/HashSet.java

- remove(x) sets isActive to false
- contains(x) treats slot as filled
- rehash() ignores inactive entries
Load and Linear Probing

Load has a big effect on performance in linear probing

- When Inserting x
- If $h[cx]$ full, $cx++$ and repeat
- When h is nearly full, scan most of array
- $load \approx 1 \rightarrow O(n)$ for $\text{add}(x)/\text{contains}(x)$

Theorem
The average number of cells examined during insertion with linear probing is

$$\frac{1}{2} \left(1 + \frac{1}{(1 - load)^2} \right)$$

Where,

$$load = \frac{\text{item count}}{\text{array length}}$$
Why does this happen?

Primary Clustering
Many keys group together, clusters degrade performance
 ▶ Table size 20
 ▶ Filled cells 5-10, 12
 ▶ Insert H hashes to 6
 ▶ Must put at 11
 ▶ Insert I hashes to 10
 ▶ Must put at 13
 ▶ Hashes from 5-13 have clustered
Quadratic Probing

Try the following sequence until an empty array element is found

\[\text{pos, pos} + 1^2, \text{pos} + 2^2, \text{pos} + 3^2, \ldots \ \text{pos} + i^2 \]

- Primary clustering fixed: not putting in adjacent cells
- add works up to \(\text{load} = 0.5 \)
 - Weiss Theorem 20.4, pg 786
- Can be done efficiently (Weiss pg 787)
- Complexity Not fully understood
 - No known relation of load to average cells searched
 - Interesting open research problem
Probe Sequence Differences

> Math.abs("Marylee".hashCode()) % 11
5

Linear Probe

Quadratic Probe

> Math.abs("Barb".hashCode()) % 11
5 --> Where?
Rehashing

High load \rightarrow make a bigger array, rehash, get small load
- Akin to expanding backing array in ArrayList
- Allocate a new larger array
- Copy over all active items to the new array
- Array should have prime number size
- $O(n)$ to rehash
Hash Tables in Java

`java.util.HashMap` Map built from hashing
`java.util.HashSet` Set built from hashing
`java.util.Hashtable` Map built from hashing, earlier class, *synchronized* for multithread apps
Hash Take-Home

- Provide $O(1)$ add/remove/contains
- Separate chaining is a pragmatic solution
 - Hash buckets have lists
- Open Address Hashing
 - Look in a sequence of buckets for an object
- Linear probing is one way to do open address hashing
 - Simple to implement: look in adjacent buckets
 - Performance suffers load approaches 1
 - Primary clustering hurts performance
- Quadratic probing is another way to do open address hashing
 - Prevents primary clustering
 - Must keep hash half-empty to guarantee successful add
 - Not fully understood mathematically