
CS311 Data Structures
Lecture 06 — Trees

Jyh-Ming Lien

June 19, 2018

Logistics

Reading

I Weiss Ch. 7 Recursion

I Weiss Ch 18 General Trees

I Weiss Ch 19 BSTs

Today

I Tree Traversals

I Recursive traversals

I Recursion practice for tree properties

Ordering

List property
There is a well defined ordering of
first, next, last objects in the data
structure,

I Wide ranging uses

I Supported in List data structure
(LinkedList, ArrayList)

I Supported structurally in Lists

I A property of the Data
Structure

Sorting property
There is a well defined ordering
relation over all possible data of a
type

I ”bigger than” ”less than”
”equal to” are well defined

I A property of the Data

I A data structure can try to
mirror the data ordering
structurally

I Useful for searching, walking
through stored data in order

Sorted Lists

Definition is straight-forward

I ”Smallest” things are structurally ”first”, ”Biggest” last

I Ordering on elements (Comparable/Comparator)

I add/insert put elements in proper place

Question: For a sorted List L, what is the complexity of L.insert(x)
which preserves sorting?

L is an ArrayList

How long to

I find insertion location?

I complete insertion?

I traverse elements in order (e.g.
for printing)?

L is a LinkedList
How long to

I find insertion location?

I complete insertion?

I traverse elements in order (e.g.
for printing)?

Alternatives to the Linear Data Structures

Hash Tables

I Abandon list property

I Abandon sorting property

I O(1) insertion/retrieval

I O(N) traversal, not ordered

Trees

I Abandon list property

I Preserve sorting property

I O(logN) insertion/retrieval

I O(N) traversal, ordered

I Commonly Binary Trees

I Other variants

Roots

Source

I Next few sessions we’ll talk
about roots

I For simplicity, we’ll call them
trees

http://www.vectorstock.com/royalty-free-vector/tree-with-root-vector-1033925

Mutated Nodes

Data

Next
(node)

Node

data next

5

data next

22

data next

10

Linked Nodes, aka List

Binary Tree Node

RightLeft

Data
(???)

20

10

8

31

67

Linked Nodes
aka Tree

root

Node structures should be familiar
for linked lists

I Singly linked: next/data

I Doubly linked:
next/previous/data

Trees use Nodes as well

I children, data, possibly
parent

I Arbitrary Trees: List<Node> of
children

I Binary Trees: left and right

children

Tree Properties of Interest

I Root of tree

I Leaves

I Data at nodes

I Size (number of nodes)

I Height of tree

I Depth of a node

Binary Tree

Binary Tree Nodes

class Node<T>{

T data;

Node<T> left, right;

}

void main(){

Node root = new Node();

root.data = 8;

root.left = new Node();

root.right= new Node();

root.left.data = 3;

root.right.data= 10;

root.left.left = new Node();

...

Structure

Recursive Example: Binary Tree Size Method

int size(Node<T> t)
Number of nodes in tree t

public Tree<T>{

Node<T> root;

// Entry point

public int size(){

return size(this.root);

}

// Recursive helper

public static <T>

int size(Node<T> t){

if(t == null){

return 0;

}

int sL = size(t.left);

int sR = size(t.right);

return 1 + sL + sR;

}

}

Usage

Tree<Integer> myTree = new Tree();

// add some stuff to myTree

int s = myTree.size();

Recursive Example: Binary Tree Height Method

Exercise

I Define a recursive t.height()

I t.height() is the longest path
from root to leaf

I Empty tree has height=0

int height(Node<T> t)
Depth of deepest node in t

public Tree<T>{

Node<T> root;

public int height(){

return height(this.root);

}

// Depth of deepest node

public static <T>

int height(Node<T> t){

// Recursive version?

}

}

Recursive Implementation of height()

Slight difference of definitions from
textbook

I Empty tree has size=0 and
height=0

I 1-node tree has size=1 and
height=1

// Depth of deepest node

public Tree<T>{

Node<T> root;

public int height(){

return height(this.root);

}

public static <T>

int height(Node<T> t){

if(t == null){

return 0;

}

int hL = height(t.left);

int hR = height(t.right);

int bigger = Math.max(hL,hR);

return 1+bigger;

}

}

The Many Ways to Walk

No linear property: several orders to traverse tree, mostly starting from
the root

I (a) Pre-order traversal (this, left, right)

I (b) Post-order traversal (left, right, this)

I (c) In-order traversal (left, this, right)

Picture shows the order nodes will be visited in each type of traversal

The Many Ways to Walk

No linear property: several orders to traverse tree

Pre-order traversal
this, left, right

Post-order traversal
left, right, this

In-order traversal
left, this, right

Walk This Tree

Show

I (a) Pre-order traversal (this,
left, right)

I (b) Post-order traversal (left,
right, this)

I (c) In-order traversal (left, this,
right)

Which one ”sorts” the numbers?

Implementing Traversals for Binary Trees

class Tree<T>{

private Node<T> root;

public void printPreOrder(){

preOrder(this.root);

}

private static void

preOrder(Node<T> t){

... print(t.data) ...

}

public void printInOrder(){ }

private static void

inOrder(Node<T> t){ }

public void printPostOrder(){ }

private static void

postOrder(Node<T> t){ }

}

class Node<T> {

T data;

Node<T> left, right;

}

Implement Print Traversals

I preOrder(this.root)

I postOrder(this.root)

I inOrder(this.root)

2 Ways

I Recursively (first)

I Iteratively (good luck. . .)

Recursive Implementation of Traversals

inOrder(Node t){

if(t != null){

inOrder(t.left);

print(t.data);

inOrder(t.right);

}

}

preOrder(Node t){

if(t != null){

print(t.data);

preOrder(t.left);

preOrder(t.right);

}

}

postOrder(Node t){

if(t != null){

postOrder(t.left);

postOrder(t.right);

print(t.data);

}

}

Evaluate

I Correct?

I Time complexity?

I Space complexity?

I What makes this so easy?

Iterative Implementation?

Compare to Iterative Implementation of Traversals

// Pseudo-code for post order print
void postOrder(root){

Stack s = new Stack();
s.push({root, DOLEFT });
while(!s.empty()){

{tree, action} = s.popTop();
if(tree == null){

// do nothing;
}
else if(action == DOLEFT){

s.push({tree, DORIGHT});
s.push({tree.left, DOLEFT});

}
else if(action == DORIGHT){

s.push({tree, DOTHIS});
s.push({tree.right, DOLEFT});

}
else if(action == DOTHIS){

print(tree.data);
}
else{

throw new YouScrewedUpException();
}

}
}

I No call stack

I Use an explicit stack

I Auxilliary data action

DOLEFT work on left
subtree

DORIGHT work on right
subtree

DOTHIS process data for
current

Evaluate

I Correct?

I Time complexity?

I Space complexity?

Weiss’s Traversals

Implemented as iterators

I See TestTreeIterators.java

I Uses BinaryTree.java and BinaryNode.java

I Must preserve state accross advance() calls

BinaryTree<Integer> t = new BinaryTree<Integer>();

... // fill tree

TreeIterator<AnyType> itr = new PreOrder<Integer>(t);

for(itr.first(); itr.isValid(); itr.advance()){

System.out.print(" " + itr.retrieve());

}

I Much more complex to understand but good for you

I Play with some of these in a debugger if you want more practice

General Notes

Iterative Traversal Implementation Notes

I Can augment tree nodes to have a parent pointer

class Node<T>{

T data; Node left, right, parent;

}

I Enables stackless, iterative traversals with great cleverness

Iterative vs Recursive Tree Methods

I Multiple types of traversals of T

I Other Tree methods: T.find(x), T.add(x), T.remove(x)

I Recursive implementations are simpler to code but will cost more
memory

I Iterative methods are possible and save memory at the expense of
tricky code

Level-order Traversal

Level Order Traversal: 1 2 3 4 5 6 7

I Top level first (depth 1: 1)

I Then next level (depth 2: 2 3)

I etc.

This is a bit trickier

I Need an auxilliary data
structure: Queue

I Does recursion help?

