Recall Tree Basics

- What distinguishes a tree from a linked list? What gets stored at each tree Node?
- What technique becomes useful for implementing operations on trees? Why?
- What is our motivations for looking at trees again? e.g. Why not just stick to ArrayList/LinkedList?
- New: How might one implement an iterator for a tree?
Binary Search Tree Property

A binary tree where every node N in the BST

- Any data in the tree rooted at N.left sort before N.data
- Any data in the tree rooted at N.right sort after N.data
Comparisons

How does java guarantee comparability?

Comparable
Data can implement Comparable

```java
int c = x.compareTo(y);
// neg for x < y, right order
// 0 for x = y, don’t care
// pos for x > y, wrong order
```

Comparator
Use a Comparator object to do comparisons

```java
Comparator<Thing> cmp =
    new ...;
int c = cmp.compare(x,y);
// neg for x < y, right order
// 0 for x = y, don’t care
// pos for x > y, wrong order
```

Presence of both hints at a fundamental problem
Define `bst.find()`

- `find(T x)` is publicly accessible

 `tree.find("Mario");`

- **Define**

 `find(T x, Node<T> t)` which works on a given start node

- **Compare via** `Comparable`:

 If `x.compareTo(t.data) < 0`

Give 2 versions

- **Recursive**

- **Iterative**

```java
public class BinarySearchTree
    <T extends Comparable<T>>
{
    protected Node<T> root;
    // Return x if in tree, null otherwise
    public T find( T x ){
        Node<T> result =
            find(x, this.root);
        if(result == null){ return null;}
        else{ return result.data; }
    }

    // Find node containing x
    // starting at node t
    // Return null if not found
    private static Node<T> find(T x, Node<T> t){
        // DEFINE ME
    }
}
```
Recursive find(x,node)

Use key of data to search through tree

- Left for less than
- Right for greater than

// pseudocode
Node<T> find(x,t){
 if(t == null){
 return null;
 }
 int diff = x.compareTo(t.data);
 if(diff < 0){ // x < t
 return find(x,t.left);
 } else if(diff > 0){ // x > t
 return find(x,t.right);
 } else { // x==t.data
 return t.data; // found
 }
}
Iterative find(x,node)

See weiss/nonstandard/BinarySearchTree.java

private static BinaryNode<T> find(T x, BinaryNode<T> t){
 while(t != null) {
 if(x.compareTo(t.data) < 0)
 t = t.left;
 else if(x.compareTo(t.data) > 0)
 t = t.right;
 else
 return t; // Match
 }
 return null; // Not found
}
What is the worst-case complexity of $\text{find}(x)$ in terms of tree properties?

Construct a tree with this worst case complexity
Warm-up: Perform BST Insertions

Draw the tree that results from the following sequence of insertions.

```java
MyBST<String> t = new MyBST<String>();
t.insert("Mario");
t.insert("Goomba");
t.insert("Luigi");
t.insert("Toad");
t.insert("Wario");
t.insert("Princess");
t.insert("Bowser");
t.insert("Chain Chomp");
```
Insertion: Similar to $\text{find}(x)$

- May need to change a left or right pointers, redefine root
- No duplication, define a TreeSet, exception on duplicate insert

Define Recursive Insert

class BinarySearchTree<T> {
 Node<T> root=null; int size=0;
 public void insert(T x){
 root = insert(x, root);
 this.size++;
 }
 private static Node<T> insert(T x, Node<T> t){
 // DEFINE ME
 }
}
Recursive insert(x,t)

From weiss/nonstandard/BinarySearchTree.java

class BinarySearchTree<T> {
 Node<T> root;
 public void insert(T x){
 root = insert(x, root);
 }
 private static Node<T> insert(T x, Node<T> t)
 {
 if(t == null)
 t = new Node<T>(x);
 else if(x.compareTo(t.data) < 0)
 t.left = insert(x, t.left);
 else if(x.compareTo(t.data) > 0)
 t.right = insert(x, t.right);
 else
 throw new DuplicateItemException(x.toString());
 return t;
 }
}

// Public method, eliminate x if present in tree
public void remove(T x);

// Recursive helper method
private Node<T> remove(T x, Node<T> t);

- Get rid of a node with data x in a binary tree; throw exception if not present (or ignore request)
- More involved than find/insert
- Preserve Tree Structure
- Recursion greatly eases implementation
Consider Mario Tree

- Describe which cases exist `tree.remove(x)`?
- Which of these do you anticipate being easy/hard to code for?
Cases for t.remove(x)

1. **x not in tree**
 - Leave tree as is or raise an exception

2. **x at a node with no children**
 - Get rid of node containing x

3. **x at a node with 1 child**
 - "Pass over" node containing x

4. **x at a node with 2 children**
 - Find a **next** node in sorting order
 - Replace x with next nodes data
 - Remove next node
 - Next is minimum of right subtree
class BST<T> {
 private Node<T> root;

 // Public facing method, find minimum element and return it
 public T findMin(){ return this.findMin(this.root); }

 // Private helper method return the smallest element in the
 // tree rooted at t
 private T findMin(Node<T> t){
 // DEFINE ME
 }

 // Public facing method, eliminate the smallest data in tree
 public void removeMin(){ this.root = removeMin(this.root); }

 // Recursive helper; remove the node with the smallest data
 // in it in the tree rooted at t. The node returned is used
 // to alter the structure of the tree.
 private Node<T> removeMin(Node<T> t){
 // DEFINE ME
 }
}
Children Cases for `remove(t, x)`

One Child: Remove 5

1. Find node t with data x
2. Replace with only child

Two Children: Remove 2

1. Find node t with data x
2. Find min node of t.right:
 - min must have 0/1 child
3. Replace t.data with min.data
4. Remove min
Recursive Implementation: Think Locally

Lesson from insert()

- Recall in insert(x,t), did stuff like

  ```
  t.right = insert(x, t.right);
  // a new/existing node is returned by insert()
  ```

- Take the same approach for remove(x,t)

- Assume these helpers are Available

  ```
  T findMin(Node<T> t); Node<T> removeMin(Node<T> t)
  ```

Implement Recursive remove(x,t)

- How to know if t is the node?
- What to do if t isn't the node?
- If t is the node, are there separate cases for action?
1. ✗ t is null
 Throw an exception
 throw new ItemNotFoundException();
 Or do nothing to the tree
 return null;
2. ✗ x less than t.data (recurse left)
 t.left = remove(t.left, x);
3. ✗ x greater than t.data (recurse right)
 t.right = remove(t.right, x);
4. □ x equals t.data (remove t)
 ▶ t has 0 children, get rid of t
 ▶ t has 1 child, pass over t
 ▶ t has 2 children, replace with next/prev
Case 4: \(x \) equals \(t.data \) (remove \(t \))

Helper methods defined elsewhere

\[
T \text{ findMin}(\text{Node}<T> \ t); \quad \text{Node}<T> \text{ removeMin}(\text{Node}<T> \ t)
\]

- \(t \) has 0 children, get rid of \(t \)

 return null;

- \(t \) has 1 child, pass over \(t \)

 (\(t.left!=null \)) ? return \(t.left \) : return \(t.right \);

- \(t \) has 2 children, replace with next or prev

 \(t.data = \text{findMin}(t.right); \)

 \(t.right = \text{removeMin}(t.right); \)

 return \(t \);

- How are \(\text{findMin}(t) \) and \(\text{removeMin}(t) \) implemented?

 - Where is the minimum node in a tree?

 - How many children does it have?
private Node<T> remove(T x, Node<T> t) {
 if (t == null)
 throw new ItemNotFoundException(x.toString());
 if (x.compareTo(t.data) < 0)
 t.left = remove(x, t.left);
 else if (x.compareTo(t.data) > 0)
 t.right = remove(x, t.right);
 // Found at this node
 else if (t.left != null && t.right != null) {
 // Two children
 t.data = findMin(t.right);
 t.right = removeMin(t.right);
 }
 else
 // One child or no children
 t = (t.left != null) ? t.left : t.right;
 return t;
}
So Far

Binary Search Trees

- Defined find() / insert() / remove()
- Helpers: findMin() / findMax() / removeMin() / removeMax()
- All ops runtime complexity $O(Height)$
- Discuss balancing trees to ensure that $Height \approx \log(Size)$
1. What is the Binary Search Tree property?

2. Are all trees binary trees? Do all binary trees have the BST property? (give counter-examples)

3. Where is the biggest data element in a BST? The smallest?

4. What are the runtime complexities of BST `tree.find(x)` and `tree.insert(x)`?

5. Which kinds of nodes are easy to remove from BSTs? Which kinds are more difficult?

6. What is a useful strategy for removing difficult nodes?