
CS311 Data Structures
Lecture 08 — AVL tree

Jyh-Ming Lien

July 2, 2018

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Logistics

Reading

Weiss Ch 19.1-3 BSTs

Weiss Ch 19.4: AVL Trees

Today

Tree Rotations: Balancing via pointer manipulation

AVL Trees

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Why Worry About Insertion and Removal?

Q: Why worry about insert/remove messing with the tree? What
affect can it have on the performance of future ops on the tree?

Q: What property of a tree dictates the runtime complexity of its
operations?

Recall from our practice footnotesize

Build and draw a BST by inserting these numbers in order: 5, 13,
18, 21, 23, 31, 5,7 89, 130
Build and draw a BST by inserting these numbers in order: 31, 18,
130, 89, 21, 5, 57, 13, 23

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Balancing Trees

add/remove/find complexity O(height(t))
Degenerate tree has height N: a linked list
Prevent this by re-balancing on insert/remove

Several kinds of trees do this
AVL left/right subtree height differ by max 1

Red-black preserve 4 red/black node properties
AA red-black tree + all left nodes black

Splay amoritized bound on ops, very different

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

The AVL Tree

The AVL tree is named after its two Soviet inventors, Georgy
Adelson-Velsky and E. M. Landis, who published it in their
1962 paper ”An algorithm for the organization of information”.
– Wikip: AVL Tree

A self-balancing tree

Operations

Proof of logarithmic height

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

http://en.wikipedia.org/wiki/AVL_tree

AVL Balance Property

T is an AVL tree if and only if
T.left and T.right differ in height by at most 1
AND T.left and T.right are AVL trees

1 2 3 4

5 6 7 8

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Answers

T is an AVL tree if and only if
T.left and T.right differ in height by at most 1
AND T.left and T.right are AVL trees

1 Not AVL

Left 3, Right 1

2 AVL 3 Not AVL

Left 2, Right 0

4 AVL

5 Not AVL

80 not AVL

6 AVL 7 Not AVL

Left 2, Right 4
95 not AVL

8 AVL

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Nodes and Balancing in AVL Trees

Track Balance Factor of trees

balance = height(t.left)

- height(t.right);

Must be -1, 0, or +1 for AVL

If -2 or +2, must fix

class Node<T>{

Node<t> left,right;

T data;

int height;

}

Don’t explicitly calculate height

Adjust balance factor on insert/delete

Recurse down to add/remove node

Unwind recursion up to adjust balance of ancestors

When unbalanced, rotate to adjust heights

Single or Double rotation can always adjust heights by 1

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Rotations

Re-balancing usually involves

Drill down during insert/remove

Follow path back up to make adjustments

Adjustments even out height of subtrees

Adjustments are usually rotations

Rotation changes structure of tree without affecting ordering

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Single Rotation Basics

Right Rotation

Rotation node becomes the right
subtree

Left Rotation

Rotation node becomes the left
subtree

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Fixing an Insertion with a Single Rotation

Insert 1, perform rotation to balance heights

Right rotation at 8

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Single Rotation Practice

Problem 1

40 was just inserted

Rebalance tree rooted at 16

Left-rotate 16

Problem 2

85 is being removed

Rebalance tree rooted at 57

Right rotate 57

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Single Rotations Aren’t Enough

Can we fix the following with a single rotation?

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Example: Can’t fix this with single rotation

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Double Rotation Overview

Left-Right

Left Rotate at k1

Right-rotate at k3

Right-Left

Right Rotate at k3

Left Rotate at k1

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Fixing an Insertion with a Double Rotation

Insert 5, perform two rotations to balance heights

Problem is at 8: left height 3, right height 1

Left rotate 4 (height imbalance remains)

Right rotate 8 (height imbalance fixed)

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Double Rotation Practice

Problem 3

35 was just inserted

Rebalance the tree rooted at 36

Use two rotations, at 33 and 36

36 should move

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Code for Rotations?

class Node<T>{

Node<T> left, right;

T data;

int height;

}

Write the following codes for single/double rotations:

// Single Right rotation

// t becomes right child, t.left becomes new

// root which is returned

Node<T> rightRotate(Node<T> t) { ... }

// Left-Right Double Rotation:

// left-rotate t.left, then right-rotate t

Node<T> leftRightRotate(Node<T> t){ ... }

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Example Rotation Codes

// Single Right rotation

Node<T> rightRotate(Node<T> t) {

Node<T> newRoot = t.left;

t.left = newRoot.right;

newRoot.right = t;

t.height = Math.max(t.left.height,

t.right.height)+1;

newRoot.height = Math.max(newRoot.left.height,

newRoot.right.height)+1;

return newRoot;

}

// Left-Right Double Rotation:

// left-rotate t.left, then right-rotate t

Node<T> leftRightRotate(Node<T> t){

t.left = leftRotate(t.left);

return rightRotate(t);

}

Computational complexities of these methods?

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Rotations in During Insertion

Insertion works by first recursively inserting new data as a leaf

Tree is ”unstitched” - waiting to assign left/right branches of
intermediate nodes to answers from recursive calls

Before returning, check height differences and perform rotations if
needed

Allows left/right branches to change the nodes to which they point

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Excerpt of Insertion Code

Identify subtree height differences to determine rotations

Useful in removal as well

private AvlNode insert(Comparable x, AvlNode t){
if(t == null){ // Found the spot to insert

t = new AvlNode(x, null, null); // return new node with data
}
else if(x.compareTo(t.element) < 0) { // Head left

t.left = insert(x, t.left); // Recursively insert
} else{ // Head right

t.right = insert(x, t.right); // Recursively insert
} //
if(height(t.left) - height(t.right) == 2){ // t.left deeper than t.right

if(height(t.left.left) > t.left.right) { // outer tree unbalanced
t = rightRotate(t); // single rotation

} else { // x went left-right:
t = leftRightRotate(t); // double rotation

}
}
else{ ... } // Symmetric cases for t.right deeper than t.left
return t;

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Rebalance This AVL Tree

Inserted 51

Which node is unbalanced?

Which rotation(s) required to fix?

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Rebalancing Answer

Insert 51 35 Unbalanced

After right rotate at 57 After left rotate at 35

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Does This Accomplish our Goal?

Proposition: Maintaining the AVL Balance Property during
insert/remove will yield a tree with N nodes and height O(logN)

Prove it: What do AVL trees have to do with rabbits?

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

AVL Properties Give log(N) height

Lemma (little theorem) (Thm 19.3 in Weiss, pg 708, adapted)

An AVL Tree of height H has at least FH+2 − 1 nodes where Fi is the ith
Fibonacci number.

Definitions

Fi : ith Fibonacci number (0,1,1,2,3,5,8,13,. . .)

S : size of a tree

H: height (assume roots have height 1)

SH as smallest size AVL Tree with height H

Proof by Induction: Base Cases True

Tree height Min Size Calculation

empty H = 0 S0 F(0+2) − 1 = 1 − 1 = 0
root H = 1 S1 F(1+2) − 1 = 2 − 1 = 1
root+(left or right) H = 2 S2 F(2+2) − 1 = 3 − 1 = 2

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Induction Part 1

Consider an Arbitrary AVL tree T

T has height H

SH smallest size for tree T

Show that the smallest size SH = FH+2 − 1

Assume equation true for smaller trees

Left/Right are smaller AVL trees
Left/Right differ in height by at most 1

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Induction Part 2

T has height H

Assume for height h < H,
smallest size of T is
Sh = Fh+2 − 1

Suppose Left is 1 higher than
Right

Left Height: h = H − 1

Left Size:
F(H−1)+2 − 1 = FH+1 − 1

Right Height: h = H − 2

Right Size:
F(H−2)+2 − 1 = FH − 1

SH = size(Left) + size(Right) + 1

= (FH+1 − 1) + (FH − 1) + 1

= FH+1 + FH − 1

= FH+2 − 1 �

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

Fibonacci Growth

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

5 10 15 20

0
20

00
40

00
60

00

height

si
ze

AVL Tree of with height H has at
least FH+2 − 1 nodes.

How does FH grow wrt H?

Exponentially:
FH ≈ φH = 1.618H

φ: The Golden Ratio

So, log(FH) ≈ H log(φ)

Or, log(N) ≈ height × φ

Or,
log(size) ≈ height ∗ constant

Jyh-Ming Lien CS311 Data Structures Lecture 08 — AVL tree

