
CS311 Data Structures
Lecture 09— Priority Queue

Jyh-Ming Lien

July 9, 2018



Priority Queues

Queue
What operations does a queue support?

Priority: Number representing importance

I Convention lower is better priority
Bring back life form. Priority One. All other priorities rescinded.

I Symmetric code if higher is better

Priority Queue (PQ): Supports 3 operations

I void insert(T x,int p): Insert x with priority p

I T findMin(): Return the object with the best priority

I void deleteMin(): Remove the the object with the best priority



Priority

Explicit Priority
insert(T x, int p)

I Priority is explicitly int p

I Separate from data

Implicit Priority
insert(Comparable<T> x)

I x ”knows” its own priority

I Comparisons dictated by
x.compareTo(y)

Implicit is simpler for discussion: only one thing (x) to draw
Explicit usually uses a wrapper node of sorts

class PQNode<T> extends Comparable<PQNode>{

int priority; T data;

public int compareTo(PQNode that){

return this.priority - that.priority;

}

}



Exercise: Design a PQ

Discuss

I How would you design
PriorityQueue class?

I What underlying data
structures would you use?

I Discuss with a neighbor

I Give rough idea of
implementation

I Make it as efficient as possible
in Big-O sense

Must Implement

I Constructor

I void insert(T x): Insert x,
knows its own priority

I T findMin(): Return the
object with the best priority

I void deleteMin(): Remove
the the object with the best
priority



Binary Heap: Sort of Sorted

I Most common way to build a PQ is using a new-ish data structure,
the Binary Heap.

I Looks similar to a Binary Search Tree but maintains a different
property

BST Property
A Node must be bigger than its left
children and smaller than its right
children

Binary Min-Heap Property
A Node must be smaller than its
children



Heap and Not Heap

Which of these is a min-heap and which is not?



Trees and Heaps in Arrays

I Mostly we have used trees of linked Nodes

I Can also put trees/heaps in an array

I Root is at 1 (discuss root at 0 later)

I left(i) = 2*i

I right(i) = 2*i + 1



Balanced v. Unbalanced in Arrays

Find the array layout of these two trees

I Root is at 1

I left(i) = 2*i

I right(i) = 2*i + 1

Q: How big of array is required?



Balanced v. Unbalanced in Arrays

0 1 2 3 4 5 6

48 17 89 3 25 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

17 3 48 25 89 63



Complete Trees

I Only ”missing” nodes in their bottom row (level set)

I Nodes in bottom row are as far left as possible

Not Complete (Why?) Complete

I Complete trees don’t waste space in arrays: no gaps

I Hard for general BSTs, easy for binary heaps. . .



PQ Ops with Binary Heaps

I Use an internal T array[] of queue contents

I Maintaint min-heap order in array

Define
Tree-like ops for array[]

root() => 1

left(i) => i*2

right(i) => i*2 + 1

parent(i) => i / 2

T findMin()
Super easy

return array[root()];

insert(T x)
Ensure heap is a complete tree

I Insert at next array[size]

I Increment size

I Percolate new element up

deleteMin()
Ensure heap is a complete tree

I Decrement size

I Replace root with last data

I Percolate root down



Demos of Binary Heaps

Not allowed on exams, but good for studying

Min Heap from David Galles @ Univ SanFran

I Visualize both heap and array version

I All ops supported

Max Heap from Steven Halim

I Good visuals

I No array

I Slow to load

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
http://visualgo.net/heap.html


Operations for Heaps

// Binary Heap, 1-indexed
public class BinaryHeapPQ<T>{

private T [] array;
private int size;

// Helpers
static int root(){

return 1;
}
static int left(int i){

return i*2;
}
static int right(int i){

return i*2+1;
}
static int parent(int i){

return i / 2;
}

// Insert a data
public void insert(T x){

size++;
ensureCapacity(size+1);
array[size] = x;
percolateUp(size);

}
// Remove the minimum element
public void deleteMin(){

array[root()] = array[size];
array[size] = null;
size--;
percolateDown(root());

}



Percolate Up/Down

Up

void percolateUp(int xdx){
while(xdx!=root()){

T x = array[xdx];
T p = array[parent(xdx)];
if(doCompare(x,p) < 0){

array[xdx] = p;
array[parent(xdx)] = x;
xdx = parent(xdx);

}
else{ break; }

}
}

Down

void percolateDown(int xdx){
while(true){

T x = array[xdx];
int cdx = left(xdx);
// Determine which child
// if any to swap with
if(cdx > size){ break; } // No left, bottom
if(right(xdx) < size && // Right valid

doCompare(array[right(xdx)], array[cdx]) < 0){
cdx = right(xdx); // Right smaller

}
T child = array[cdx];
if(doCompare(child,x) < 0){ // child smaller

array[cdx] = x; // swap
array[xdx] = child;
xdx = cdx; // reset index

}
else{ break; }

}
}



PQ/Binary Heap Code

BinaryHeapPQ.java

I Code distribution today contains working heap

I percolateUp() and percolateDown() do most of the work

I Uses ”root at index 1” convention

Text Book Binary Heap

I Weiss uses a different approach in percolate up/down

I Move a ”hole” around rather than swapping

I Probably saves 1 comparison per loop iteration

I Have a look in weiss/util/PriorityQueue.java



Complexity of Binary Heap PQ methods?

T findMin();

void insert(T x); // x knows its priority

void deleteMin();

Give the complexity and justify for each



Height Again. . .

Efficiency of Binary Heap PQs

findMin() clearly O(1)

deleteMin() worst case height

insert(x) worst case height

Height of a Complete Binary Tree wrt number of nodes N?

I Guesses?



Summary of Binary Heaps

Op Worst Case Avg Case
findMin() O(1) O(1)
insert(x) O(logN) O(1)
deleteMin() O(logN) O(logN)

I Notice: No get(x) method or remove(x) methods

I These would involve searching the whole binary heap/priority queue
if they did existed: O(N)


