CS311 Data Structures
Lecture 09—Priority Queue

Jyh-Ming Lien

July 9, 2018
Queue
What operations does a queue support?

Priority: Number representing importance

- Convention lower is better priority

 Bring back life form. Priority One. All other priorities rescinded.

- Symmetric code if higher is better

Priority Queue (PQ): Supports 3 operations

- void insert(T x, int p): Insert x with priority p
- T findMin(): Return the object with the best priority
- void deleteMin(): Remove the object with the best priority
Explicit Priority
insert(T x, int p)
 ▶ Priority is explicitly int p
 ▶ Separate from data

Implicit Priority
insert(Comparable<T> x)
 ▶ x "knows" its own priority
 ▶ Comparisons dictated by x.compareTo(y)

Implicit is simpler for discussion: only one thing (x) to draw
Explicit usually uses a wrapper node of sorts

class PQNode<T> extends Comparable<PQNode>{
 int priority; T data;
 public int compareTo(PQNode that){
 return this.priority - that.priority;
 }
}

Exercise: Design a PQ

Discuss

▶ How would you design PriorityQueue class?
▶ What underlying data structures would you use?
▶ Discuss with a neighbor
▶ Give rough idea of implementation
▶ Make it as efficient as possible in Big-O sense

Must Implement

▶ Constructor
▶ void insert(T x): Insert x, knows its own priority
▶ T findMin(): Return the object with the best priority
▶ void deleteMin(): Remove the object with the best priority
Most common way to build a PQ is using a new-ish data structure, the **Binary Heap**.

Looks similar to a Binary Search Tree but maintains a different property

BST Property

A Node must be bigger than its left children and smaller than its right children

Binary Min-Heap Property

A Node must be smaller than its children
Heap and Not Heap

Which of these is a min-heap and which is not?

(a)
(b)
Trees and Heaps in Arrays

- Mostly we have used trees of linked Nodes
- Can also put trees/heaps in an array

Root is at 1 (discuss root at 0 later)
- $\text{left}(i) = 2 \times i$
- $\text{right}(i) = 2 \times i + 1$
Balanced v. Unbalanced in Arrays

Find the array layout of these two trees

- Root is at 1
- \(\text{left}(i) = 2 \times i \)
- \(\text{right}(i) = 2 \times i + 1 \)

Q: How big of array is required?
Balanced v. Unbalanced in Arrays

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
<td>17</td>
<td>89</td>
<td>3</td>
<td>25</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>3</td>
<td>48</td>
<td>25</td>
<td>89</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

| | 63 |
Complete Trees

- Only "missing" nodes in their bottom row (level set)
- Nodes in bottom row are as far left as possible

Not Complete (Why?)

Complete trees don’t waste space in arrays: no gaps
Hard for general BSTs, easy for binary heaps...
PQ Ops with Binary Heaps

- Use an internal T array[] of queue contents
- Maintain min-heap order in array

Define

Tree-like ops for array[]

root() => 1
left(i) => i*2
right(i) => i*2 + 1
parent(i) => i / 2

T findMin()
Super easy

return array[root()];

insert(T x)

Ensure heap is a complete tree
- Insert at next array[size]
- Increment size
- Percolate new element up

deleteMin()

Ensure heap is a complete tree
- Decrement size
- Replace root with last data
- Percolate root down
Demos of Binary Heaps

Not allowed on exams, but good for studying

Min Heap from David Galles © Univ SanFran
 ▶ Visualize both heap and array version
 ▶ All ops supported

Max Heap from Steven Halim
 ▶ Good visuals
 ▶ No array
 ▶ Slow to load
Operations for Heaps

// Binary Heap, 1-indexed
public class BinaryHeapPQ<T>{
 private T [] array;
 private int size;

 // Helpers
 static int root(){
 return 1;
 }
 static int left(int i){
 return i*2;
 }
 static int right(int i){
 return i*2+1;
 }
 static int parent(int i){
 return i / 2;
 }
 // Insert a data
 public void insert(T x){
 size++;
 ensureCapacity(size+1);
 array[size] = x;
 percolateUp(size);
 }
 // Remove the minimum element
 public void deleteMin(){
 array[root()] = array[size];
 array[size] = null;
 size--;
 percolateDown(root());
 }
}
Up

void percolateUp(int xdx){
 while(xdx!=root()){
 T x = array[xdx];
 T p = array[parent(xdx)];
 if(doCompare(x,p) < 0){
 array[xdx] = p;
 array[parent(xdx)] = x;
 xdx = parent(xdx);
 }
 else{ break; }
 }
}

Down

void percolateDown(int xdx){
 while(true){
 T x = array[xdx];
 int cdx = left(xdx);
 // Determine which child
 // if any to swap with
 if(cdx > size){ break; } // No left, bottom
 if(right(xdx) < size && // Right valid
 doCompare(array[right(xdx)], array[cdx]) < 0){
 cdx = right(xdx); // Right smaller
 }
 T child = array[cdx];
 if(doCompare(child,x) < 0){ // child smaller
 array[cdx] = x; // swap
 array[xdx] = child;
 xdx = cdx; // reset index
 }
 else{ break; }
 }
}
BinaryHeapPQ.java

- Code distribution today contains working heap
- `percolateUp()` and `percolateDown()` do most of the work
- Uses "root at index 1" convention

Text Book Binary Heap

- Weiss uses a different approach in percolate up/down
- Move a "hole" around rather than swapping
- Probably saves 1 comparison per loop iteration
- Have a look in `weiss/util/PriorityQueue.java`
Complexity of Binary Heap PQ methods?

T findMin();
void insert(T x); // x knows its priority
void deleteMin();

Give the complexity and justify for each
Height Again...

Efficiency of Binary Heap PQs

- `findMin()` clearly $O(1)$
- `deleteMin()` worst case height
- `insert(x)` worst case height

Height of a **Complete Binary Tree** wrt number of nodes N?

- Guesses?
Summary of Binary Heaps

<table>
<thead>
<tr>
<th>Op</th>
<th>Worst Case</th>
<th>Avg Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>findMin()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insert(x)</td>
<td>$O(\log N)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
</tr>
</tbody>
</table>

- **Notice:** No `get(x)` method or `remove(x)` methods
- **These would involve searching the whole binary heap/priority queue if they did existed:** $O(N)$