
CS311 Data Structures
Lecture 11 — Red-Black Trees

Jyh-Ming Lien

July 11, 2018



History

In a 1978 paper ”A Dichromatic Framework for Balanced
Trees”, Leonidas J. Guibas and Robert Sedgewick derived
red-black tree from symmetric binary B-tree. The color ”red”
was chosen because it was the best-looking color produced by
the color laser printer. . .

I Wikip: Red-black tree
I TreeSet and TreeMap in the Java Collections are

implemented using red-black trees.

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree


Red-Black Tree

A Binary Search Tree with 4
additional properties

1. Every node is red or black

2. The root is black

3. If a node is red, its children are
black

4. Every path from root to null

has the same number of black
nodes

Frequently drawn/reasoned about
with null colored black



A Sample RB Tree (?)

I Is this a red-black tree?

I Discounting color, is it an AVL tree?



Immediate Implications for Height Difference

Red-black properties

1. Every node is red or black

2. The root is black

3. If a node is red, its children are black

4. Every path from root to null has the same number of black nodes

Question
From root to a null in the left subtree of a red-black tree, 8 black nodes
are crossed (don’t count the null at bottom)

I What is the max/min height of the left subtree?

I What is the max/min height of the right subtree?

I What is the max/min height of the whole tree?

I What is the maximum difference between left/right subtrees?



Logarithmic Height - Check

Lemma: The height h of a red-black tree with n internal nodes is no
greater than 2 log(n+ 1).
Proof:

I Every root-to-leaf path in the tree has the same number of black
nodes; let this number be B.

I So there are no leaves in this tree at depth less than B, which means
the tree has at least as many internal nodes as a complete binary
tree of height B.

I Therefore, n ≥ 2B−1. This implies B ≤ log(n+ 1).

I Because, two red nodes must not adjacent to each other, at most
every other node on a root-to-leaf path is red. Therefore, h ≤ 2B.

I Putting these together, we have h ≤ 2log(n+ 1).



Preserving Red Black Properties

Basics

I Insert data as in standard binary trees as a node initially

I If two consecutive reds result, fix it

I Gets complicated fast

Insertion Strategy: Bottom-up

I Insert the node like a regular BST node

I What should be the color of this node?

I Change the color of nodes or rotate the nodes to maintain the
red-black properties

I Implement recursively



General ideas

Basics

I Insert red at a leaf

I If black parent, then done

I If red parent, we will have to check if uncle is red or black

I If uncle and parent are both red, change colors.

I If uncle is black and parent is red, single/double rotation.

I Unwind back up fixing any red-red occurrences



Examples

I Insert 25: node 25 is a red right-child of 20; 20 is black; done.

I Insert 3: node 3 is a red left-child of 5; 5 is red, so rotate ?



Rotations

Another way of looking at this



Examples: Leaves Easy

I Insert 25 and 68: black parent, easy



Examples: Rotate and Recolor

I Insert 3 red



Examples: Rotate and Recolor

I Insert 3 red

I right rotation at 10, recolor 5 black 10 red

Why not skip rotation, recolor 3 red 5 black 10 red ?

I INCORRECT: Problem with black null child of 10



Examples: Uncles Matter

Insert 82 red

I Recolor parent 80 black

I Recolor grandparent 85 red

I Recolor uncle 90 black



Problems with Red Subtree Roots

If a fix (recolor+rotation) makes a subtree root red, then we may have
created two consecutive red nodes

I Insertion parent was red

I Insertion grandparent must be black

I New root is at grandparent position

I Insertion great-grandparent may be red

If this happens

I Must detect and percolate up performing additional fixes

I Can always change the root to black for a final fix

I Strategy 1 requires down to insert, up to fix via rotation/recoloring



Examples: Must Percolate Fixes Up

Insert 45 red

I Recoloring alone won’t work

I Must also rotate right 70

I Lots of recoloring also but involves trip back up the tree



More Examples

Try this out
Insert A, L, G, O, R, I, T, H, M in order into a red-black tree.



More Examples



AVL Tree v Red Black Tree

AVL

I (+) Conceptually simpler

I (+) Stricter height bound: fast
lookup

I (-) Stricter height bound: more
rotations on insert/delete

I (-) Simplest implementation is
recursive: down/up

Red Black

I (-) More details/cases

I (-) Implementation is nontrivial

I (-) Looser height bound: slower
lookup

I (+) Looser height bound:
faster insert/delete

I (+) Tricks can yield iterative
down-only implementation



Practical Use of Trees

I Balanced BSTs keep contents in order and provided guarantee
O(logN) find/add/remove

I Reproduce them in sorted order via an in-order traversal

I In Java, get a tree.iterator() and walk it through data

I Can also visit sorted subsets of data by locating a record in
O(logN) time then proceeding with an in-order traversal from there.

I In Java, TreeSet<T> provides tailSet(T start) to get a subset
”view” of the the set


