<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

\{0\} \{1\} \{2\} \{3\} \{4\} \{5\} \{6\} \{7\} \{8\} \{9\} \{10\} \{11\} \{12\} \{13\} \{14\} \{15\} \{16\} \{17\} \{18\} \{19\} \{20\} \{21\} \{22\} \{23\} \{24\}
\{0, 1\} \{2\} \{3\} \{4, 6, 7, 8, 9, 13, 14\} \{5\} \{10, 11, 15\} \{12\} \\
\{16, 17, 18, 22\} \{19\} \{20\} \{21\} \{23\} \{24\}
{0, 1} {2} {3} {5} {10, 11, 15} {12}
{4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22} {19} {20} {21} {23} {24}
\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24\}
A forest of 8 trees
The forest after the union of trees with 4 and 5
The forest after the union of trees with roots 6 and 7
The forest after the union of trees with roots 4 and 6
The forest formed by union-by-size, with the size encoded as negative numbers
Worst-case tree for N=16
The forest formed by union-by-height, with the height encoded as negative numbers
Path compression resulting from a find(14) on the tree
package weiss.nonstandard;

// DisjointSets class

// CONSTRUCTION: with int representing initial number of sets

// ***********************************PUBLIC OPERATIONS***********************************
// void union(root1, root2) --> Merge two sets
// int find(x) --> Return set containing x

// ***********************************ERRORS***********************************
// Error checking or parameters is performed

public class DisjointSets
{
 public DisjointSets(int numElements)
 { /* Figure 24.21 */ }

 public void union(int root1, int root2)
 { /* Figure 24.21 */ }

 public int find(int x)
 { /* Figure 24.21 */ }

 private int [] s;

 private void assertIsRoot(int root)
 {
 assertIsItem(root);
 if(s[root] >= 0)
 throw new IllegalArgumentException();
 }

 private void assertIsItem(int x)
 {
 if(x < 0 || x >= s.length)
 throw new IllegalArgumentException();
 }
}
/**
 * Construct the disjoint sets object.
 * @param numElements the initial number of disjoint sets.
 */

public DisjointSets(int numElements)
{
 s = new int[numElements];
 for(int i = 0; i < s.length; i++)
 s[i] = -1;
}

/**
 * Union two disjoint sets using the height heuristic.
 * root1 and root2 are distinct and represent set names.
 * @param root1 the root of set 1.
 * @param root2 the root of set 2.
 * @throws IllegalArgumentException if root1 or root2
 * are not distinct roots.
 */

public void union(int root1, int root2)
{
 assertIsRoot(root1);
 assertIsRoot(root2);
 if(root1 == root2)
 throw new IllegalArgumentException();

 if(s[root2] < s[root1]) // root2 is deeper
 s[root1] = root2; // Make root2 new root
 else
 {
 if(s[root1] == s[root2])
 s[root1]--; // Update height if same
 s[root2] = root1; // Make root1 new root
 }
}

/**
 * Perform a find with path compression.
 * @param x the element being searched for.
 * @return the set containing x.
 * @throws IllegalArgumentException if x is not valid.
 */

public int find(int x)
{
 assertIsItem(x);
 if(s[x] < 0)
 return x;
 else
 {
 return s[x] = find(s[x]);
 }
}
Minimum spanning tree
Kruskal’s algorithm
The nearest common ancestor (NCA) for each request in the pair sequence

- \(\text{NCA}(x, y) \) is A
- \(\text{NCA}(x(u, z)) \) is C
- \(\text{NCA}(x(w, x)) \) is A
- \(\text{NCA}(x(z, w)) \) is B
- \(\text{NCA}(x(w, y)) \) is y
Before we return from D in post-order traversal, this is how the disjoint sets look like. Anchors (A, B, C, D) are nodes in stack.
After we return from D in post-order traversal, we union(C, D) and we can answer NCA(D, x) for all x that has been visited, such as NCA(D, p) and NCA(D, q) but not NCA(D, r)