

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|}
\cline { 2 - 5 } & 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 & 9 \\
\hline 10 & 11 & 12 & 13 & 14 \\
\hline 15 & 16 & 17 & 18 & 19 \\
\hline 20 & 21 & 22 & 23 & 24 \\
\hline
\end{array} \\
& \left\{\begin{array}{l}
\{1\}\{2\}\{3\}\{4\}\{5\}\{6\}\{7\}\{8\}\{9\}\{10\}\{11\}\{12\}\{13\}\{14\} \\
\{15\}\{16\}\{17\}\{18\}\{19\}\{20\}\{21\}\{22\}\{23\}\{24\}
\end{array}\right.
\end{aligned}
$$


```
\begin{tabular}{|ccccc|c|}
\cline { 3 - 5 } \multicolumn{1}{c|}{0} & 1 & 2 & 3 & 4 \\
& 6 & 6 & 8 & 9 \\
10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 \\
& 20 & 21 & 22 & 23 & 24 \\
\hline
\end{tabular}
\(\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\), 19, 20, 21, 22, 23, 24\}
```


A forest of 8 trees

The forest after the union of trees with 4 and 5

The forest after the union of trees with roots 6 and 7
(0) (1) (2) (3) (4) (5) (6)

0	-1
1	-1
2	-1
3	-1
4	-1
5	4
6	4
7	6

The forest after the union of trees with roots 4 and 6

The forest formed by union-by-size, with the size encoded as negative numbers

The forest formed by union-by-height, with the height encoded as negative numbers

Path compression resulting from a find(14) on the tree
package weiss．nonstandard；
package weiss．nonstandard；
／／DisjointSets class
／／
CONSTRUCTION：with int representing initial number of sets

private int［ ］s；
public int find（int x $)$
$\{/ *$ Figure $24.21 * /\}$
 ／／Error checking or parameters is performed
 －－＞Return set containing x
 public class DisjointSets
 ＊＊＊
private void assertIsItem（ int x ）
\｛
if（ $x<0 \| x>=s . l$ ength $)$ ， m

Minimum spanning tree

Kruskal's algorithm

The nearest common ancestor (NCA) for each request in the pair sequence

- $\operatorname{NCA}(x, y)$ is A
- $\operatorname{NCA}(x(u, z)$ is C
- $\operatorname{NCA}(x(w, x)$ is A
- $\operatorname{NCA}(x(z, w)$ is B
- $\operatorname{NCA}(\mathrm{x}(\mathrm{w}, \mathrm{y})$ is y

Before we return from D in post-order traversal, this is how the disjoint sets look like. Anchors (A, B, C, D) are nodes in stack.

After we return from D in post-order traversal, we union(C, D) and we can answer $\operatorname{NCA}(D, x)$ for all x that has been visited, such as $\operatorname{NCA}(\mathrm{D}, \mathrm{p})$ and $\operatorname{NCA}(\mathrm{D}, \mathrm{q})$ but not $\mathrm{NCA}(\mathrm{D}, \mathrm{r})$

