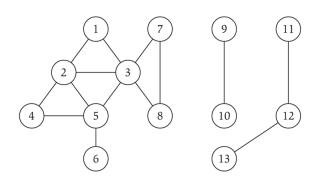
CS311 Data Structures Lecture 15 — Graph

Jyh-Ming Lien

November 20, 2017

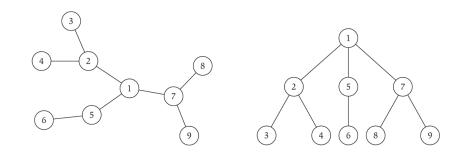
Graph Representation

- Terminology G = (V, E)
 - V =nodes or vertices $\{v\}$
 - E = edges between pairs of nodes, {e = (u, v)}, where u and v are called ends of e
 - For directed edge e = (u, v) is an ordered list where u is the tail and v is the head and e leaves u and enters v.
 - A path is a sequence of vertices v₁, v₂, · · · , v_{k-1}, v_k. A path is called simple if v_i ≠ v_j∀i ≠ j
 - A cycle is a path $v_1, v_2, \dots, v_{k-1}, v_k$ in which $v_1 = v_k$, fork > 2, and the first k - 1 nodes are all distinct
 - An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.



Graph and Tree

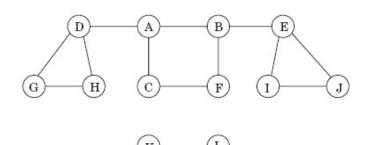
- ► An undirected graph G is a tree if
 - ► G is connected
 - ► G does not contain a cycle
 - G has n-1 edges, where n is the number of nodes in G

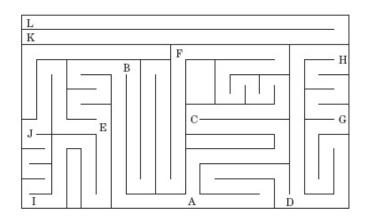


- Many algorithms work by converting a graph to a tree (the simplest representation of the graph)
 - shortest path tree
 - spanning tree
 - exploring tree (BFS, DFS, ...)
 - ► ...

Graph Search

- What parts of the graph are reachable from a given vertex? (i.e., connected components)
- Many problems require processing all graph vertices (and edges) in systematic fashion
- Basic tools to safely explore an unknown environment





Graph Search

Basic exploration algorithm

Algorithm 2.1: EXPLORE $(G = \{V, E\}, v \in V)$

- Can the algorithm always work?
 - ▶ proof

Example: EXPLORE(B)

