CS311 Data Structures
 Lecture 15 - Graph

Jyh-Ming Lien

November 20, 2017

Graph Representation

- Terminology $G=(V, E)$
- $V=$ nodes or vertices $\{v\}$
- $E=$ edges between pairs of nodes, $\{e=(u, v)\}$, where u and v are called ends of e
- For directed edge $e=(u, v)$ is an ordered list where u is the tail and v is the head and e leaves u and enters v.
- A path is a sequence of vertices $v_{1}, v_{2}, \cdots, v_{k-1}, v_{k}$. A path is called simple if $v_{i} \neq v_{j} \forall i \neq j$
- A cycle is a path $v_{1}, v_{2}, \cdots, v_{k-1}, v_{k}$ in which $v_{1}=v_{k}$, fork >2, and the first $k-1$ nodes are all distinct
- An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Graph and Tree

- An undirected graph G is a tree if
- G is connected
- G does not contain a cycle
- G has $n-1$ edges, where n is the number of nodes in G

- Many algorithms work by converting a graph to a tree (the simplest representation of the graph)
- shortest path tree
- spanning tree
- exploring tree (BFS, DFS, ...)
- ...

Graph Search

- What parts of the graph are reachable from a given vertex? (i.e., connected components)
- Many problems require processing all graph vertices (and edges) in systematic fashion
- Basic tools to safely explore an unknown environment

(k) (L)

Graph Search

- Basic exploration algorithm

Algorithm 2.1: $\operatorname{Explore}(G=\{V, E\}, v \in V)$

- Can the algorithm always work?
- proof

Graph Search

- Example: Explore(B)

