
CS451Real-time 
Rendering Pipeline

JYH-MING LIEN
DEPARTMENT OF COMPUTER SCIENCE
GEORGE MASON UNIVERSITY

Based on Tomas Akenine-Möller’s lecture note

1



You say that you render a ”3D 
scene”, but what does it mean?

 First of all, to take a picture, it takes a camera
 Decides what should end up in the final image

Point
camera

dir near

far

fov (angle)

 Create image of geometry inside gray region
 Used by OpenGL, DirectX, ray tracing, etc.

2



You say that you render a ”3D 
scene”, but what does it mean?

 A 3D scene includes:
 Geometry (triangles, lines, points, and more)

A triangle consists of 3 vertices
 A vertex is 3D position, and may

 Material properties of geometry
 Light sources
 Textures (images to glue onto the geometry)

 Let us take a look at OBJ format include normals, texture 
coordinates and more

3



Rendering Primitives
 Use graphics hardware (GPU) for real time computation…
 These GPUs can render points, lines, triangles very efficiently
 A surface is thus an approximation by a number of such 

primitives

4



Fixed-Function Pipeline
 From chapter 2 in the RTR book
 The pipeline is the ”engine” that creates images from 3D scenes
 Three conceptual stages of the pipeline:

 Application (executed on the CPU)

 Geometry

 Rasterizer

Application Geometry Rasterizer3D
sceneinput Image

outputTransformation matrices
(World, View, Projection)

Textures / Color
Lighting information

Game
CAD/Maya

GIS

5



Back to the pipeline:
The APPLICATION stage

 Executed on the CPU
 Means that the programmer decides what happens here

 Examples:
 Collision detection
 Speed-up techniques
 Animation

 Most important task: send rendering primitives (e.g. triangles) to the 
graphics hardware

Application Geometry Rasterizer

6



The GEOMETRY stage

 Task: ”geometrical” operations on the input data (e.g. triangles)
 Allows:

 Move objects (matrix multiplication)

 Move the camera (matrix multiplication)

 Compute lighting at vertices of triangle

 Project onto screen (3D to 2D matrix multiplication)

 Clipping (remove triangles outside the screen)

 Map to window

Application Geometry Rasterizer

7



Animate objects and camera

 Can animate in many different ways with 4x4 matrices 
 Example: 

 Before displaying a torus on screen, a matrix that represents a rotation 
can be applied. The result is that the torus is rotated.

 Same thing with camera (this is possible since motion is relative)

Application Geometry RasterizerApplication Geometry Rasterizer

8



The RASTERIZER stage
 Main task: take output from GEOMETRY and turn into visible 

pixels on screen

 add textures and various other per-pixel operations
 And visibility is resolved here: sorts the primitives in the z-

direction

Application Geometry Rasterizer

9



Rewind! Let’s take a closer look

 The programmer ”sends” down primtives to be rendered through 
the pipeline (using API calls)

 The geometry stage does per-vertex operations
 The rasterizer stage does per-pixel operations
 Next, scrutinize geometry and rasterizer

10



GEOMETRY stage in more detail
 The model transform
 Originally, an object is in model space
 Move, orient, and transform geometrical objects into 

world space
 Ex: a sphere is defined with origin at (0,0,0) with radius 1
 Translate, rotate, scale to make it appear elsewhere

 Done per vertex with a 4x4 matrix multiplication
 How does the matrix look like? Can it be any 4x4 matrix?

Application Geometry RasterizerApplication Geometry Rasterizer

11



The view transform

 You can move the camera in the same manner
 But apply inverse transform to objects, so that camera looks down 

negative z-axis (as in OpenGL)

z x

Application Geometry RasterizerApplication Geometry Rasterizer

12



Lighting
 Compute lighting at vertices

light

Geometry

blue

red green

Rasterizer

 mimics how light in nature behaves
– uses empirical models, hacks, and some real theory

 Much more about this in later lectures

Application Geometry RasterizerApplication Geometry Rasterizer

white

white
white

13



Projection

 Two major ways to do it
 Orthogonal (useful in fewer applications)

 Perspective (most often used)
 Mimics how humans perceive the world, i.e., objects’ apparent size 

decreases with distance

Application Geometry RasterizerApplication Geometry Rasterizer

Orthogonal Perspective 

14



Projection

 Also done with a matrix multiplication
 Pinhole camera (left), analog used in CG (right)

Application Geometry RasterizerApplication Geometry Rasterizer

Pinhole camera CG camera 

rendered 
image

film

Frustum

15



Clipping and Screen Mapping
 Square (cube) after projection
 Clip primitives to square

 Screen mapping, scales and translates square so that it ends 
up in a rendering window

 These screen space coordinates together with Z (depth) are 
sent to the rasterizer stage

Application Geometry RasterizerApplication Geometry Rasterizer

16



Summary

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Application Geometry RasterizerApplication Geometry Rasterizer

17



The RASTERIZER in more detail

 Scan-conversion
 Find out which pixels are inside the primitive

 Texturing
 Put images on triangles

 Interpolation over triangle
 Z-buffering

 Make sure that what is visible from the camera really is displayed

 Double buffering
 And more…

Application Geometry Rasterizer

18



Scan conversion
 Triangle vertices from GEOMETRY is input
 Find pixels inside the triangle

 Or on a line, or on a point

 Do per-pixel operations on these pixels:
 Interpolation

 Texturing

 Z-buffering

 And more…

Application Geometry RasterizerApplication Geometry Rasterizer

19



Interpolation
 Interpolate colors over the triangle

 Called Gouraud interpolation

blue

red green

Application Geometry Rasterizer

Gouraud flat

20



Texturing

 Uses and other applications
 More realism
 Bump mapping
 Pseudo reflections
 Light mapping
 ... many others

+ =

 texturing is like gluing images onto geometrical 
object

Application Geometry Rasterizer

Bump mapping

21



Z-buffering
 The graphics hardware is pretty stupid

 It ”just” draws triangles

 However, a triangle that is covered by a more closely 
located triangle should not be visible

 Assume two equally large tris at different depths

Triangle 1
near

Triangle 2
far

Draw 1 then 2

incorrect

Draw 2 then 1

correct

22



 Would be nice to avoid sorting…
 The Z-buffer (aka depth buffer) solves this
 Idea:

 Store z value (depth) at each pixel
 When scan-converting a triangle, compute z at each pixel on triangle
 Compare triangle’s z to Z-buffer z-value
 If triangle’s z is smaller, then replace Z-buffer and color buffer
 Else do nothing

 Can render in any order (if no blending is involved)

Z-buffering
Application Geometry Rasterizer

23



Double buffering

 The monitor displays one image at a time
 So if we render the next image to screen, then rendered primitives 

pop up
 And even worse, we often clear the screen before generating a 

new image
 A better solution is ”double buffering”

Application Geometry Rasterizer

24



 Use two buffers: one front and one back
 The front buffer is displayed
 The back buffer is rendered to
 When new image has been created in back buffer, swap front and 

back

Double buffering
Application Geometry Rasterizer

25



Programmable pipeline

 Programmable shading has become a hot topic
 Vertex shaders

 Pixel shaders

 Adds more control and much more possibilities for the programmer

Application Geometry Rasterizer

HARDWARE

Vertex shader
program

Pixel shader
program

Application Geometry Rasterizer

bus

CPU
Very general

Command GPU GPU
Highly specialized

e.g, vector calculations
Highly parallelized

More to come when we talk about shaders!!

26


	CS451Real-time �Rendering Pipeline
	You say that you render a ”3D scene”, but what does it mean?
	You say that you render a ”3D scene”, but what does it mean?
	Rendering Primitives
	Fixed-Function Pipeline
	Back to the pipeline:�The APPLICATION stage	
	The GEOMETRY stage
	Animate objects and camera
	The RASTERIZER stage
	Rewind! 	Let’s take a closer look
	GEOMETRY stage in more detail
	The view transform
	Lighting
	Projection
	Projection
	Clipping and Screen Mapping
	Summary
	The RASTERIZER in more detail
	Scan conversion
	Interpolation
	Texturing
	Z-buffering
	Z-buffering
	Double buffering
	Double buffering
	Programmable pipeline

