
CS451 Transforms

Jyh-Ming Lien

Department of Computer SCience

George Mason University

Based on Tomas Akenine-Möller’s lecture note

1

Why transforms?
• We want to be able to animate/deform objects

• Translations
• Rotations
• Shears

• And more…

• We want to be able to use projection transforms

• Part of this lecture is a refresher

2

How to implement transforms?

• Matrices!

• Can you really do everything with a matrix?

• Not everything, but a lot!

• We use 3x3 and 4x4 matrices

=

=

222120

121110

020100

mmm
mmm
mmm

p
p
p

z

y

x

Mp

3

How do I use transforms practically?

• Say you have a circle with origin at (0,0,0) and with radius 1 – unit circle

• glTranslatef(8,0,0);

• RenderCircle();

• glTranslatef(3,2,0);

• glScalef(2,2,2);

• RenderCircle();

4

Cont’d from previous slide
A simple 2D example

• A circle in model space

x

y

glTranslatef(8,0,0);

glTranslatef(3,2,0);

glScalef(2,2,2);

5

Another Example

• How do you code OpenGL to do this?
Rotate π/4

Answer:

6

Derivation of rotation matrix in 2D

 −
=

=

y

x

y

x

zz

p
p

z

n
n

R

RpRn

αα
αα

cossin
sincos

? is what

7

Rotations in 3D
• Same as in 2D for Z-rotations, but with a 3x3 matrix

• For X

• For Y

−
=

−=

 −
=⇒

 −
=

αα

αα
α

αα
ααα

αα
αα

α
αα
αα

α

cos0sin
010

sin0cos
)(

cossin0
sincos0
001

)(

100
0cossin
0sincos

)(
cossin
sincos

)(

y

x

zz

R

R

RR

8

Translations must be simple?

• Rotation is matrix multiplication, translation is addition
• Would be nice if we could only use matrix multiplications…
• Turn to homogeneous coordinates
• Add a new component to each vector

nRptpp =+=

???
???
???

ation Rot nTranslatio

9

Homogeneous notation
• A point:
• Translation becomes:

• A vector (direction):

• Translation of vector:

• Also allows for projections (later)

1

1
)(

1000
100
010
001

+
+
+

=

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d

dTd =

10

 Just add a row at the bottom, and a
column at the right:

 Similarly for X and Y
 det(R)=1 (for 3x3 matrices)
 Trace(R)=1+2cos(alpha) (for any axis,3x3)

Rotations in 4x4 form

 −

=

1000
0100
00cossin
00sincos

)(
αα
αα

αzR

11

Scaling

• Uniform scaling

• Non-uniform scaling

=

1000
000
000
000

)(
s

s
s

sS

=

s

sS

/1000
0100
0010
0001

)('

=

1000
000
000
000

),,(
u

t
s

utsS

12

Shearing

• Shearing in XZ plane
• Using the Z coordinate to change the X coordinate

=

1000
0100
0010
001

)(

s

sH xz

)(sH xz

x x

z z

13

Review basic transforms
• Scaling

 Shear

 Rigid-body: rotation then translation
TRX =

 Concatenation of matrices
TRRT ≠

TRX =
 Inverses and rotation about arbitrary axis

 Not commutative, i.e.,
 In , the rotation is done first

Q1: How to scale along
an arbitrary direction?

Q2: How do you scale a
translated, rotated shape?

14

The Euler Transform

)()()(),,(hprrph yxz RRRE =

 Assume the view looks down the negative z-axis, with
up in the y-direction, x to the right

 h=head (yaw)
 p=pitch
 r=roll

Head or Yaw
(y-axis)

Roll
(z-axis)

Pitch
(x-axis)

16

Gimbal Lock
 Euler Transform is a hierarchical system

 XYZ or ZYX or ... Indicates the order of rotation

 Gimbal lock can occur
 The top and the bottom of the hierachy overlaps
 looses one degree of freedom

 Can also be explained using Matrix

By The Guerrilla CG Project

17

Quaternions

• Extension of imaginary numbers
• Avoids gimbal lock that the Euler could produce
• Focus on unit quaternion:

),,,(),(zyxwvw qqqqq == qq

1)(2222 =+++= wzyx qqqqn q

 A unit quaternion is:

1|||| where)sin,(cos == qq uuq φφ

18

Unit quaternions are perfect
for rotations!
• Compact (4 components)
• Can show that

1ˆˆˆ −qpq

 Read the quaternion code from PA1 for more details
 Mathtool/quaternion.h

 …represents a rotation of 2φ radians around uq of p

)sin,(cos quq •= φφ

 That is: a unit quaternion represent a rotation as a
rotation axis and an angle
 In OpenGL: glRotatef(ux,uy,uz,angle);

19

Projections
• Orthogonal (parallel) and Perspective

20

Orthogonal projection

• Simple, just skip one coordinate
• Say, we’re looking along the z-axis

• Then drop z, and render

=

⇒

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

21

Orthogonal projection
• Not invertible! (determinant is zero)

• For Z-buffering
• It is not sufficient to project to a plane

• Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

 Unit cube is also used for perspective proj.
 Simplifies clipping

22

What about those homogenenous
coordinates?

• pw=0 for vectors, and pw=1 for points

• What if pw is not 1 or 0?

• Solution is to divide all components by pw

()Twzyx pppp=p

()Twzwywx pppppp 1///=p

 Gives a point again!

 Can be used for projections, as we will see

24

Perspective projection

zx

x

p
d

p
q −

=
z

x
x p

pdq −=⇒
z

y
y p

p
dq −= :yFor

d>0

−

=

0/100
0100
0010
0001

d

pP

25

Perspective projection

• The ”arrow” is the
homogenization
process

−

=

0/100
0100
0010
0001

d

pP ?=pPp

−

=

10/100
0100
0010
0001

z

y

x

p p
p
p

d

pP ⇒

−

=

dp
p
p
p

z

z

y

x

/

−
−
−

=

−
−
−

=

1

/
/

1
/
/
/

d
pdp
pdp

pdp
pdp
pdp

zy

zx

zz

zy

zx

q

z

x
x p

pdq −=
z

y
y p

p
dq −=

	CS451 Transforms
	Why transforms?
	How to implement transforms?
	How do I use transforms practically?
	Cont’d from previous slide�A simple 2D example
	Another Example
	Derivation of rotation matrix in 2D�
	Rotations in 3D
	Translations must be simple?
	Homogeneous notation
	Rotations in 4x4 form
	Scaling
	Shearing
	Review basic transforms
	The Euler Transform
	Gimbal Lock
	Quaternions
	Unit quaternions are perfect for rotations!
	Projections
	Orthogonal projection
	Orthogonal projection	
	Orthogonal projection
	What about those homogenenous coordinates?
	Perspective projection
	Perspective projection
	Perspective projection

