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Why transforms?
• We want to be able to animate/deform objects

• Translations
• Rotations
• Shears

• And more…

• We want to be able to use projection transforms

• Part of this lecture is a refresher
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How to implement transforms?

• Matrices!

• Can you really do everything with a matrix?

• Not everything, but a lot!

• We use 3x3 and 4x4 matrices
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How do I use transforms practically?

• Say you have a circle with origin at (0,0,0) and with radius 1 – unit circle

• glTranslatef(8,0,0);

• RenderCircle();

• glTranslatef(3,2,0);

• glScalef(2,2,2);

• RenderCircle();
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Cont’d from previous slide
A simple 2D example

• A circle in model space

x

y

glTranslatef(8,0,0);

glTranslatef(3,2,0);

glScalef(2,2,2);
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Another Example

• How do you code OpenGL to do this?
Rotate π/4

Answer:
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Derivation of rotation matrix in 2D
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Rotations in 3D
• Same as in 2D for Z-rotations, but with a 3x3 matrix

• For X

• For Y
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Translations must be simple?

• Rotation is matrix multiplication, translation is addition
• Would be nice if we could only use matrix multiplications…
• Turn to homogeneous coordinates
• Add a new component to each vector

nRptpp =+=
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Homogeneous notation
• A point:
• Translation becomes:

• A vector (direction):

• Translation of vector:

• Also allows for projections (later)
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 Just add a row at the bottom, and a 
column at the right:

 Similarly for X and Y
 det( R )=1 (for 3x3 matrices)
 Trace( R )=1+2cos(alpha)  (for any axis,3x3)

Rotations in 4x4 form

















 −

=

1000
0100
00cossin
00sincos

)(
αα
αα

αzR

11



Scaling

• Uniform scaling

• Non-uniform scaling
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Shearing

• Shearing in XZ plane
• Using the Z coordinate to change the X coordinate
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Review basic transforms
• Scaling

 Shear

 Rigid-body: rotation then translation
TRX =

 Concatenation of matrices
TRRT ≠

TRX =
 Inverses and rotation about arbitrary axis 

 Not commutative, i.e.,
 In                , the rotation is done first

Q1: How to scale along 
an arbitrary direction?

Q2: How do you scale a 
translated, rotated shape? 
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The Euler Transform

)()()(),,( hprrph yxz RRRE =

 Assume the view looks down the negative z-axis, with
up in the y-direction, x to the right

 h=head (yaw)
 p=pitch
 r=roll

Head or Yaw 
(y-axis)

Roll
(z-axis)

Pitch
(x-axis)
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Gimbal Lock
 Euler Transform is a hierarchical system

 XYZ or ZYX or ... Indicates the order of rotation

 Gimbal lock can occur
 The top and the bottom of the hierachy overlaps
 looses one degree of freedom

 Can also be explained using Matrix

By The Guerrilla CG Project
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Quaternions

• Extension of imaginary numbers
• Avoids gimbal lock that the Euler could produce
• Focus on unit quaternion:

),,,(),( zyxwvw qqqqq == qq

1)( 2222 =+++= wzyx qqqqn q

 A unit quaternion is:

1||||     where)sin,(cos == qq uuq φφ
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Unit quaternions are perfect 
for rotations!
• Compact (4 components)
• Can show that 

1ˆˆˆ −qpq

 Read the quaternion code from PA1 for more details
 Mathtool/quaternion.h

 …represents a rotation of 2φ radians around uq of p

)sin,(cos quq •= φφ

 That is: a unit quaternion represent a rotation as a
rotation axis and an angle
 In OpenGL: glRotatef(ux,uy,uz,angle);
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Projections
• Orthogonal (parallel) and Perspective
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Orthogonal projection

• Simple, just skip one coordinate
• Say, we’re looking along the z-axis

• Then drop z, and render
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Orthogonal projection
• Not invertible!  (determinant is zero)

• For Z-buffering
• It is not sufficient to project to a plane

• Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

 Unit cube is also used for perspective proj.
 Simplifies clipping 
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What about those homogenenous 
coordinates?

• pw=0 for vectors, and pw=1 for points

• What if pw is not 1 or 0?

• Solution is to divide all components by pw

( )Twzyx pppp=p

( )Twzwywx pppppp 1///=p

 Gives a point again!

 Can be used for projections, as we will see
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Perspective projection
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Perspective projection

• The ”arrow” is the 
homogenization 
process
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