CS451 Tra nsforms

1

J yh-Ming Lien
Department of Computer SC ience
George Mason University

Why tra nsforms?

- We want to be able to animate/deform objects
- Translations
- Rotations
- Shears
- And more...
- We want to be able to use projection transforms
- Part of this lecture is a refresher

How to implement transforms?

- Matrices!
- Can you really do everything with a matrix?
- Not everything, but a lot!
- We use 3×3 and 4×4 matrices

$$
\mathbf{p}=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & m_{22}
\end{array}\right)
$$

How do I use transforms practically?

- Say you have a circle with origin at $(0,0,0)$ a nd with radius 1 - unit circle
- glTranslatef(8,0,0);
- RenderCircle();
- glTranslatef(3,2,0);
- glScalef(2,2,2);
- RenderCircle();

Cont'd from previous slide A simple 2D example

- A circle in model space
glTranslatef(3,2,0);
glScalef(2,2,2);
glTranslatef(8,0,0);

Another Example

- How do you code OpenGL to do this?

Answer:

Derivation of rotation matrix in 2D

$$
\begin{aligned}
\mathbf{n} & =\mathbf{R}_{z} \mathbf{p} \quad \text { what is } \mathbf{R}_{z} ? \\
\binom{n_{x}}{n_{y}} & =\underbrace{\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)}_{\mathbf{R}_{Z}}\binom{p_{x}}{p_{y}}
\end{aligned}
$$

Rotations in 3D

- Same asin 2D for Z-rotations, but with a 3×3 matrix

$$
\mathbf{R}_{z}(\alpha)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \Rightarrow \mathbf{R}_{z}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- ForX

$$
\begin{aligned}
& \mathbf{R}_{x}(\alpha)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) \\
& \mathbf{R}_{y}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right)
\end{aligned}
$$

- ForY

Tra nslations must be simple?

Translation
$\left(\begin{array}{lll}? & ? & ? \\ ? & ? & ? \\ ? & ? & ?\end{array}\right) \mathbf{p}=\mathbf{p}+\mathbf{t}$

Rotation
$\mathbf{R p}=\mathbf{n}$

- Rotation is ma trix multiplic a tion, tra nslation is a dd ition
- Would be nice if we could only use matrix multiplic ations...
- Tum to homogeneous coordinates
- Add a new component to each vector

Homogeneous notation

- A point:

$$
\mathbf{p}=\left(\begin{array}{llll}
p_{x} & p_{y} & p_{z} & 1
\end{array}\right)^{T}
$$

- Translation becomes:
- A vector (direction):

$$
\underbrace{\left(\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)}_{\mathbf{T}(\mathbf{t})}\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x}+t_{x} \\
p_{y}+t_{y} \\
p_{z}+t_{z} \\
1
\end{array}\right)
$$

- Translation of vector:

$$
\mathbf{d}=\left(\begin{array}{llll}
d_{x} & d_{y} & d_{z} & 0
\end{array}\right)^{T}
$$

- Also allows for projections (later)
$\mathbf{T d}=\mathbf{d}$

Rotations in 4×4 form

- Just add a row at the bottom, and a column at the right:

$$
\mathbf{R}_{z}(\alpha)=\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Simila rly for X and Y
- $\operatorname{det}(R)=1$ (for 3×3 matrices)
- Trace(R)=1+2cos(alpha) (for a ny axis,3x3)

Sc aling

- Unifom scaling $S(s)=\left(\begin{array}{cccc}s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad S^{\prime}(s)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 / s\end{array}\right)$

$$
S(s, t, u)=\left(\begin{array}{llll}
s & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Shearing

- Shearing in XZ plane
- Using the Zcoordinate to change the Xcoordinate

- Sc aling
- Shear

Q1: How to scale along an arbitrary direction?

Q2: How do you scale a translated, rotated shape?

- Rigid-body: rotation then translation

X = TR

- Concatenation of matrices
- Not commutative, i.e., RT $\neq \mathbf{T R}$
- In $\mathbf{X}=\mathbf{T R}$, the rotation is done first
- Inverses a nd rotation a bout a rbitrary axis

The Euler Transform

- Assume the view looks down the negative z-axis, with up in the y-direction, x to the right

Head orYaw
$\mathbf{E}(h, p, r)=\mathbf{R}_{z}(r) \mathbf{R}_{x}(p) \mathbf{R}_{y}(h)$

- h=head (yaw)
- $p=p i t c h$
- $r=r o l l$

Gimbal Lock

- Euler Transform is a hierarchical system
- XYZor ZYX or ... Indicates the order of rotation
- Gimbal lock can occur
- The top and the bottom of the hierachy overlaps
- looses one degree of freedom
- Can also be explained using Matrix

By The Guemilla CG Project

Quatemions

$$
\mathbf{q}=\left(q_{w}, \mathbf{q}_{v}\right)=\left(q_{w}, q_{x}, q_{y}, q_{z}\right)
$$

- Extension of imaginary numbers
- Avoidsgimbal lock that the Euler could produce
- Focus on unit quatemion:

$$
n(\mathbf{q})=q_{x}^{2}+q_{y}^{2}+q_{z}^{2}+q_{w}^{2}=1
$$

- A unit quatemion is:

$$
\mathbf{q}=\left(\cos \phi, \sin \phi \mathbf{u}_{q}\right) \quad \text { where }\left\|\mathbf{u}_{q}\right\|=1
$$

Unit quatemions a re perfect

 for rotations! $\mathbf{q}=\left(\cos \phi, \sin \phi \bullet \mathbf{u}_{q}\right)$- Compact (4 components)
- Can show that $\hat{\mathbf{q}} \hat{\mathbf{p}} \hat{\mathbf{q}}^{-1}$
- ...represents a rotation of 2ϕ radians a round u_{q} of p
- That is: a unit quatemion represent a rotation asa rotation axis a nd an a ngle
- In OpenGL: gIRotatef(ux,uy,uz,angle);
- Read the quatemion code from PA1 formore details
- Mathtool/quatemion.h

Projections

- Orthogonal (parallel) and Perspective

- Simple, just skip one coordinate
- Say, we're looking along the z-axis
- Then drop z, and render

$$
\mathbf{M}_{\text {ortho }}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \Rightarrow \mathbf{M}_{\text {ortho }}\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
0 \\
1
\end{array}\right)
$$

Orthogonal projection

- Not invertible! (determina nt is zero)
- For Z-buffering
- It is not sufficient to project to a plane
- Rather, we need to "project" to a box
image plane

Unit cube: $[-1,-1,-1]$ to $[1,1,1]$
eye

- Unit cube is also used forperspective proj.
- Simplifies clipping

What about those homogenenous coordinates?

- $p w=0$ for vectors, and $p w=1$ for points

$$
\mathbf{p}=\left(\begin{array}{llll}
p_{x} & p_{y} & p_{z} & p_{w}
\end{array}\right)^{T}
$$

- What if pw is not 1 or 0 ?
- Solution is to divide all components by pw

$$
\mathbf{p}=\left(\begin{array}{llll}
p_{x} / p_{w} & p_{y} / p_{w} & p_{z} / p_{w} & 1
\end{array}\right)^{T}
$$

- Givesa point again!

Can be used for projections, as we will see

Perspective projection

$$
d>0
$$

$$
\text { projection plane, } z=-d
$$

$$
\frac{q_{x}}{p_{x}}=\frac{-d}{p_{z}} \Rightarrow q_{x}=-d \frac{p_{x}}{p_{z}}
$$

For $\mathrm{y}: q_{y}=-d \frac{p_{y}}{p_{z}}$

$$
\mathbf{P}_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right)
$$

Perspective projection

$$
\begin{aligned}
& \mathbf{P}_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right) \quad \mathbf{P}_{p} \mathbf{p}=? \\
& \mathbf{P}_{p} \mathbf{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
-p_{z} / d
\end{array}\right) \Rightarrow \mathbf{q}=\left(\begin{array}{c}
-d p_{x} / p_{z} \\
-d p_{y} / p_{z} \\
-d p_{z} / p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
-d p_{x} / p_{z} \\
-d p_{y} / p_{z} \\
-d \\
1
\end{array}\right) \\
& q_{x}=-d \frac{p_{x}}{p_{z}} \quad q_{y}=-d \frac{p_{y}}{p_{z}} \\
& \text { - The "a rrow" is the } \\
& \text { homogenization } \\
& \text { process }
\end{aligned}
$$

