CS451 More Transforms

Quatemion/Dual Quatemion and Projections

J yh-Ming Lien
Department of Computer SC ience
George Mason University

The Geometry stage

The Rasterization stage

- Scan-conversion
- Find out which pixels are inside the primitive
- Texturing
- Put images on triangles
- Interpolation over tria ngle
- Z-buffering
- Make sure that what is visible from the camera really is displayed
- Double buffering
- ...

Review basic transforms

- Sc a ling

- Shear

Q1: How to scale long an a rbitrary direction?

Q2: How do you scale a translated, rotated shape?

- Rigid-body: rotation then translation

$$
\mathbf{X}=\mathbf{T R}
$$

- Concatenation of matrices
- Not commutative, i.e., RT $=\mathbf{T R}$
- In $\mathbf{X}=\mathbf{T R}$, the rotation is done first

The Euler Transform

- Assume the view looks down the negative zaxis, with up in the y-direction, x to the right Head orYaw

$$
\mathbf{E}(h, p, r)=\mathbf{R}_{z}(r) \mathbf{R}_{x}(p) \mathbf{R}_{y}(h)
$$

- h=head (yaw)
- $p=p i t c h$
- $\mathrm{r}=\mathrm{roll}$

Gimbal Lock

- Euler Transform is a hierarchical system
- XYZor ZYX or ... Indic ates the order of rotation
- there are 6 different conbinations (or 12 if something like XYX is allowed)
- Gimbal lock can occur
- The top and the bottom of the hierachy overlaps
- loosesone degree of freedom
- Can also be explained using Matrix

By The Guerilla CG Project

Quatemions

$$
\mathbf{q}=\left(q_{w}, \mathbf{q}_{v}\right)=(w, x \mathbf{i}, y \mathbf{j}, z \mathbf{k})
$$

- Extension of imagina ry numbers
- Avoidsgimbal lock that the Eulercould produce
- Focus on unit quatemion:

$$
n(\mathbf{q})=w^{2}+x^{2}+y^{2}+z^{2}=1
$$

- A example of unit quatemion is:

$$
\mathbf{q}=\left(\cos \phi, \sin \phi \mathbf{u}_{q}\right) \quad \text { where }\left\|\mathbf{u}_{q}\right\|=1
$$

Quatemions Basic Operations

- Given a quatemion $\mathbf{q}=(w, \mathbf{v})$
- Scalar multiplic ation sq = (sw, sv)
- Addition $\mathbf{q}_{\mathbf{1}}+\mathbf{q}_{\mathbf{2}}=\left(\mathbf{w}_{1}+\mathrm{w}_{2}, \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)$
- Multiplication $\mathbf{q}_{\mathbf{1}} \mathbf{q}_{\mathbf{2}}=\left(\left(w_{1} w_{2}-\mathbf{v}_{\mathbf{1}} \mathbf{v}_{2}\right), w_{1} \mathbf{v}_{\mathbf{2}}+w_{2} \mathbf{v}_{\mathbf{1}}+\left(\mathbf{v}_{\mathbf{1}} \times \mathbf{v}_{\mathbf{2}}\right)\right)$
- Conjugate $\mathbf{q}^{*}=(w,-\mathbf{v})$
- Norm $\|\mathbf{q}\|=\mathbf{q} \mathbf{q}^{*}$
- Normalization $\mathbf{q}_{\mathbf{n}}=\mathbf{q} /\|\mathbf{q}\|$

Rotation Quatemions

- Represents a rotation of ϕ radians a round \mathbf{v}

$$
\mathbf{q}=\left(\cos \frac{\phi}{2}, \sin \frac{\phi}{2} \bullet \mathbf{v}\right)
$$

- Compact (4 components)

- Can show that $\mathbf{p}^{\prime}=\mathbf{q}(\mathbf{O}, \mathbf{p}) \mathbf{q}^{*}$
- That is: a unit quatemion represent a rotation asa rotation axis and an a ngle - In OpenG L: gIRotatef(ux,uy,uz,angle);
- Read the quatemion code from PA1 formore details
- mathtool/quatemion.h

Rotation Matrix vs. Rotation Quatemion

- Why should (or should not) you use matrix?
- Why should (or should not) you use quatemion?
- Demo

Dual Quatemion

- Dual numberz $=r+d \varepsilon$ where $\varepsilon \neq 0$ but $\varepsilon^{2}=0$
- \quad Add $z_{A}+z_{B}=\left(r_{A}+d_{A} \varepsilon\right)+\left(r_{B}+d_{B} \varepsilon\right)=\left(r_{A}+r_{B}\right)+\left(d_{A}+d_{B}\right) \varepsilon$
- Multiply $z_{A} z_{B}=\left(r_{A}+d_{A} \varepsilon\right)\left(r_{B}+d_{B} \varepsilon\right)=\left(r_{A} r_{B}\right)+\left(r_{B} d_{A}+r_{A} d_{B}\right) \varepsilon+\left(d_{A} d_{B}\right) \varepsilon^{2}$
- Dual quatemion $\mathbf{Q}=\mathbf{q}_{\mathrm{r}}+\mathbf{q}_{\mathrm{d}} \varepsilon$
- Represent both rotation \mathbf{q}_{r} and translation \mathbf{q}_{d}
- Scalar Multiplication $s \mathbf{Q}=s \mathbf{q}_{\mathrm{r}}+s \mathbf{q}_{\mathrm{d}} \varepsilon$
- Addition $\mathbf{Q}_{1}+\mathbf{Q}_{2}=\left(\mathbf{q}_{\mathbf{r} 1}+\mathbf{q}_{\mathbf{r} 2}\right)+\left(\mathbf{q}_{\mathrm{d} 1}+\mathbf{q}_{\mathrm{d} 2}\right) \varepsilon$
- Multiplic ation $\mathbf{Q}_{1} \mathbf{Q}_{2}=\left(\mathbf{q}_{\mathrm{r} 1} \mathbf{q}_{\mathrm{r} 2}\right)+\left(\mathbf{q}_{\mathrm{r} 1} \mathbf{q}_{\mathrm{d} 2}+\mathbf{q}_{\mathrm{d} 1} \mathbf{q}_{\mathrm{r} 2}\right) \varepsilon$
- Conjugate $\mathbf{Q}^{*}=\mathbf{q}_{\mathbf{r}}{ }^{*}+\mathbf{q}_{\mathrm{d}}{ }^{*} \varepsilon$
- Norm $\|\mathbf{Q}\|=\mathbf{Q Q}^{*}$

Dual Quatemion (Cont.)

Question: Can you show that $\mathbf{Q}_{\mathbf{r}}, \mathbf{Q}_{\mathbf{d}}$ and \mathbf{Q} are unit dual quaternion?

- Transformation dual quatemion
- Given a rotation quatemion $\mathbf{q}_{r}=(\cos (\theta / 2), \sin (\theta / 2) \mathbf{v})$
- Given a translation vectort $=\left(t_{x}, t_{y}, t_{z}\right)$
- Rotation only dual quatemion $\mathbf{Q}_{r}=\mathbf{q}_{r}+(0,0,0,0) \varepsilon$
- Translation only dual quatemion $\mathbf{Q}_{d}=(1,0,0,0)+\left(0, t_{x} / 2, t_{y} / 2, t_{z} / 2\right) \varepsilon$
- Combine both Rotation and Translation $\mathbf{Q}=\mathbf{Q}_{d} \mathbf{Q}_{r}$
- Using dual quatemion to perform rigid transform
- Similar to using quatemion, we use dual quatemion as
- $p^{\prime}=\mathbf{Q} p \mathbf{Q}^{*}$
- Here p is first rotated and then translated to produce p^{\prime}

Create Dual Quatemion

- Given a rotation angle θ and a rotation vectorvand a translation vectort
- We first construct a rotation quatemion
- $\mathbf{q}_{\mathbf{r}}=(\cos (\theta / 2), \sin (\theta / 2) \mathbf{v})$
- Then we construct the second quatemion to represent translation
- $\mathbf{q}_{\boldsymbol{d}}=(0, \mathbf{t} / 2) \mathbf{q}_{\mathrm{r}}$
- Why?
- Finally, $\mathbf{Q}=\left(\mathbf{q}_{r}, \mathbf{q}_{\mathrm{d}} \varepsilon\right)$
- Question: How do you convert dual quatemion \mathbf{Q} to get the rotational quatemion and translational vectort

Projections

- Orthogonal (parallel) and Perspective

Orthogonal projection

- Simple, just skip one coord inate
- Say, we're looking along the z-axis
- Then drop z, and render

$$
\mathbf{M}_{\text {ortho }}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \Rightarrow \mathbf{M}_{\text {orho }}\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
0 \\
1
\end{array}\right)
$$

Orthogonal projection

- Not invertible! (determina nt is zero)
- For Z-buffering
- It is not sufficient to project to a plane
- Rather, we need to "project" to a box
image plane

Unit cube: $[-1,-1,-1]$ to $[1,1,1]$
eye

- Unit cube is also used forperspective proj.
- Simplifies clipping

Orthogonal projection

- The "unitc ube projection" is invertible
- Simple to derive
- a translation followed by a scale

What about those homogenenous coordinates?

- $p w=0$ for vectors, and $p w=1$ for points

$$
\mathbf{p}=\left(\begin{array}{llll}
p_{x} & p_{y} & p_{z} & p_{w}
\end{array}\right)^{T}
$$

- What if pw is not 1 or 0 ?
- Solution is to divide all components by pw

$$
\mathbf{p}=\left(\begin{array}{llll}
p_{x} / p_{w} & p_{y} / p_{w} & p_{z} / p_{w} & 1
\end{array}\right)^{T}
$$

- Givesa point again!

Can be used for projections, as we will see

Perspective projection

$$
d>0
$$

$$
\text { projection plane, } z=-d
$$

$$
\frac{q_{x}}{p_{x}}=\frac{-d}{p_{z}} \Rightarrow q_{x}=-d \frac{p_{x}}{p_{z}}
$$

For y: $q_{y}=-d \frac{p_{y}}{p_{z}}$

$$
\mathbf{P}_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right)
$$

Perspective projection

$$
\begin{aligned}
& \mathbf{P}_{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right) \quad \mathbf{P}_{p} \mathbf{p}=? \\
& \mathbf{P}_{p} \mathbf{p}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right)\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
-p_{z} / d
\end{array}\right) \Rightarrow \mathbf{q}=\left(\begin{array}{c}
-d p_{x} / p_{z} \\
-d p_{y} / p_{z} \\
-d p_{z} / p_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
-d p_{x} / p_{z} \\
-d p_{y} / p_{z} \\
-d \\
1
\end{array}\right) \\
& q_{x}=-d \frac{p_{x}}{p_{z}} \quad q_{y}=-d \frac{p_{y}}{p_{z}} \\
& \text { - The "a rrow" is the } \\
& \text { homogenization } \\
& \text { process }
\end{aligned}
$$

Perspective projection

- Again, the determinant is 0 (not invertible)
- To make the rest of the pipeline the same asfororogonal projection:
- project into unit-cube

- Not much different from P_{p}
- Do not collapse z-coord to a plane

