CS451 More Transforms

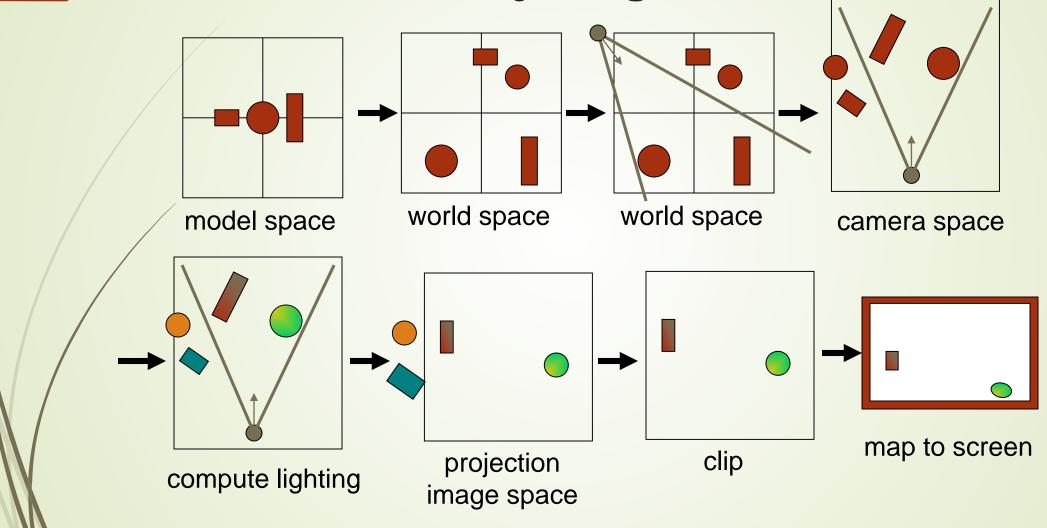
Quaternion/Dual Quaternion and Projections

Jyh-Ming Lien

Department of Computer SCience

George Mason University

The Geometry stage



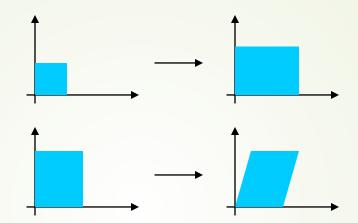
The Rasterization stage

- Scan-conversion
 - Find out which pixels are inside the primitive
- Texturing
 - Put images on triangles
- Interpolation over triangle
- Z-buffering
 - Make sure that what is visible from the camera really is displayed
- Double buffering
- •

Review basic transforms

Scaling

Shear



Q1: How to scale long an arbitrary direction?

Q2: How do you scale a translated, rotated shape?

Rigid-body: rotation then translation

$$X = TR$$

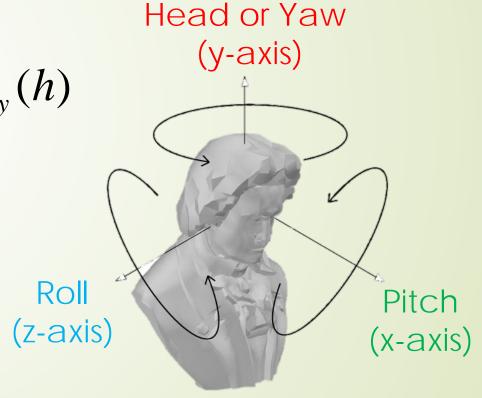
- Concatenation of matrices
 - Not commutative, i.e., RT ≠ TR
 - In X = TR, the rotation is done first

The Euler Transform

 Assume the view looks down the negative zaxis, with up in the y-direction, x to the right

 $\mathbf{E}(h, p, r) = \mathbf{R}_{z}(r)\mathbf{R}_{x}(p)\mathbf{R}_{y}(h)$

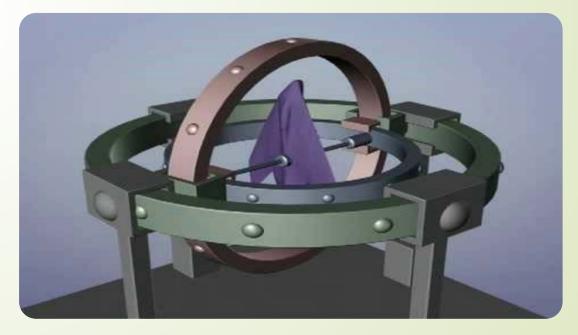
- h=head (yaw)
- p=pitch
- \bullet r=roll



Gimbal Lock

- Euler Transform is a hierarchical system
 - XYZ or ZYX or ... Indicates the order of rotation.
 - there are 6 different conbinations (or 12 if something like XYX is allowed)
- Gimbal lock can occur
 - The top and the bottom of the hierarchy overlaps
 - looses one degree of freedom

Can also be explained using Matrix



By The Guerrilla CG Project

Quaternions

$$\mathbf{q} = (q_w, \mathbf{q}_v) = (w, x\mathbf{i}, y\mathbf{j}, z\mathbf{k})$$

- Extension of imaginary numbers
- Avoids gimbal lock that the Euler could produce
- Focus on unit quaternion:

$$n(\mathbf{q}) = w^2 + x^2 + y^2 + z^2 = 1$$

A example of unit quaternion is:

$$\mathbf{q} = (\cos \phi, \sin \phi \mathbf{u}_q)$$
 where $||\mathbf{u}_q|| = 1$

Quaternions Basic Operations

- Given a quaternion q=(w,v)
- Scalar multiplication sq = (sw, sv)
- Addition $q_1 + q_2 = (W_1 + W_2, V_1 + V_2)$
- Multiplication $q_1q_2 = ((w_1w_2 v_1v_2), w_1v_2 + w_2v_1 + (v_1 \times v_2))$
- Conjugate q* = (w, -v)
- Norm $||q|| = qq^*$
- Normalization $\mathbf{q}_n = \mathbf{q}/||\mathbf{q}||$

Rotation Quaternions

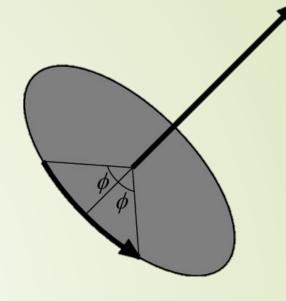
• Represents a rotation of ϕ radians around \mathbf{v}

$$\mathbf{q} = (\cos\frac{\phi}{2}, \sin\frac{\phi}{2} \bullet \mathbf{v})$$

- Compact (4 components)
- Can show that $(0,p')=q(0,p)q^*$
- Rotation can be applied in the way similar to matrix

•
$$(0,p') = q_3q_2q_1(0,p)q_1^*q_2^*q_3^*$$

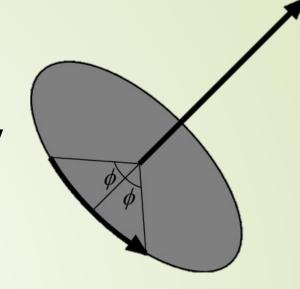
Try to rotate vector (1,1,1) around Y-axis for 180 degree



Rotation Quaternions

• Represents a rotation of ϕ radians around \mathbf{v}

$$\mathbf{q} = (\cos\frac{\phi}{2}, \sin\frac{\phi}{2} \bullet \mathbf{v})$$



- That is: a unit quaternion represent a rotation as a rotation axis and an angle
 - In OpenGL: glRotatef(ux,uy,uz,angle);
- Read the quaternion code from PA03 for more details
 - mathtool/quaternion.h

Rotation Matrix vs. Rotation Quaternion

Why should (or should not) you use matrix?

Why should (or should not) you use quaternion?

Dual Quaternion

- Dual number $z = r + d\varepsilon$ where $\varepsilon \neq 0$ but $\varepsilon^2 = 0$
 - Add $z_A + z_B = (r_A + d_A \varepsilon) + (r_B + d_B \varepsilon) = (r_A + r_B) + (d_A + d_B) \varepsilon$
 - Multiply $z_A z_B = (r_A + d_A \varepsilon) (r_B + d_B \varepsilon) = (r_A r_B) + (r_B d_A + r_A d_B) \varepsilon + (d_A d_B) \varepsilon^2$
- Dual quaternion $Q = q_r + q_d \varepsilon$
 - Represent both rotation q_r and translation q_d
 - Scalar Multiplication $sQ = sq_r + sq_d\varepsilon$
 - Addition $Q_1 + Q_2 = (q_{r1} + q_{r2}) + (q_{d1} + q_{d2})\varepsilon$
 - Multiplication $Q_1Q_2 = (q_{r1} q_{r2}) + (q_{r1} q_{d2} + q_{d1} q_{r2})\varepsilon$
 - Conjugate $Q^* = q_r^* + q_d^* \varepsilon$
 - Norm $||\mathbf{Q}|| = \mathbf{Q}\mathbf{Q}^*$

Dual Quaternion (Cont.)

Question: Can you show that Q_r , Q_d and Q are unit dual quaternion?

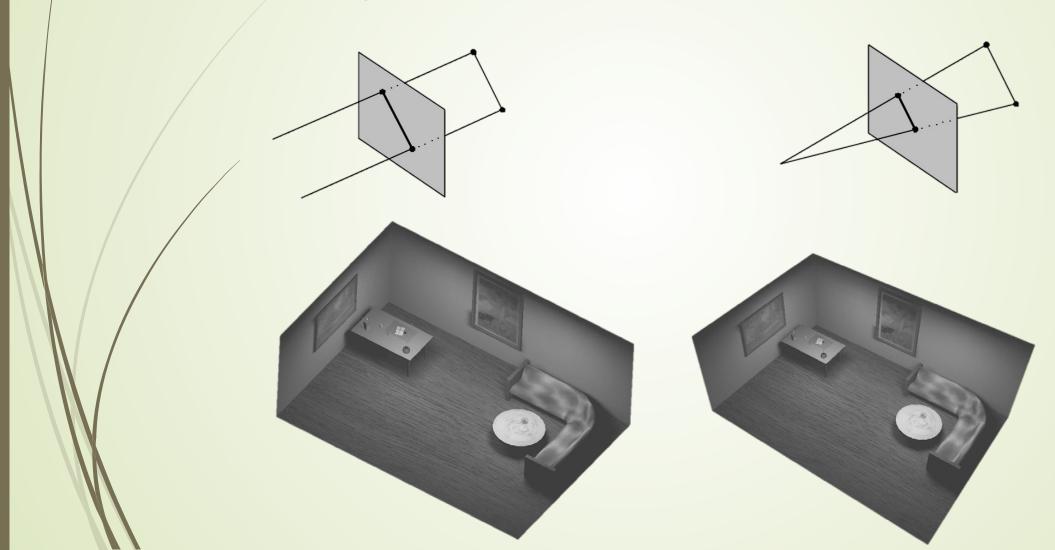
- Transformation dual quaternion
 - Given a rotation quaternion $\mathbf{q}_r = (\cos(\theta/2), \sin(\theta/2)\mathbf{v})$
 - Given a translation vector $\mathbf{t} = (t_x, t_y, t_z)$
 - Rotation only dual quaternion $\mathbf{Q}_r = \mathbf{q}_r + (0,0,0,0)\varepsilon$
 - Translation only dual quaternion $\mathbf{Q}_d = (1,0,0,0) + (0, t_x/2, t_y/2, t_z/2)\varepsilon$
 - Combine both Rotation and Translation $Q = Q_d Q_r$
- Using dual quaternion to perform rigid transform
 - Similar to using quaternion, we use dual quaternion as
 - $p' = \mathbf{Q} p \mathbf{Q}^*$
 - Here p is first rotated and then translated to produce p'

Create Dual Quaternion

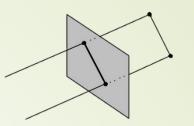
- Given a rotation angle θ and a rotation vector \mathbf{v} and a translation vector \mathbf{t}
- We first construct a rotation quaternion
 - $\mathbf{q_r} = (\cos(\theta/2), \sin(\theta/2)\mathbf{v})$
- Then we construct the second quaternion to represent translation
 - $\mathbf{q_d} = (0, \mathbf{t}/2) \, \mathbf{q_r}$
 - Why?
- Finally, $\mathbf{Q} = (\mathbf{q_r}, \mathbf{q_d} \, \varepsilon)$
- Question: How do you convert dual quaternion Q to get the rotational quaternion and translational vector t

Projections

Orthogonal (parallel) and Perspective



Orthogonal projection

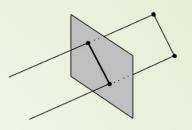


- Simple, just skip one coordinate
 - Say, we're looking along the z-axis
 - Then drop z, and render

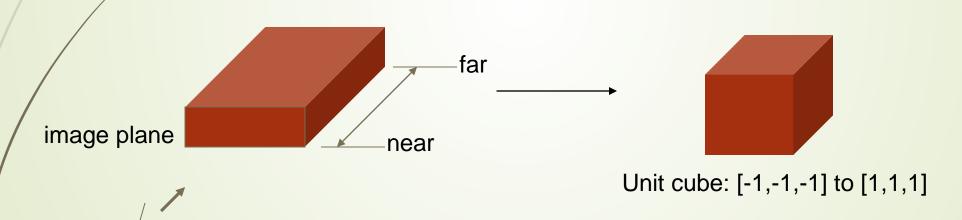
$$\mathbf{M}_{ortho} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \implies \mathbf{M}_{ortho} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \\ 0 \\ 1 \end{pmatrix}$$

$$\rightarrow$$
 $Z \rightarrow$ $Z \rightarrow$

Orthogonal projection



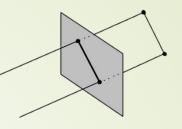
- Not invertible! (determinant is zero)
- For Z-buffering
 - It is not sufficient to project to a plane
 - Rather, we need to "project" to a box



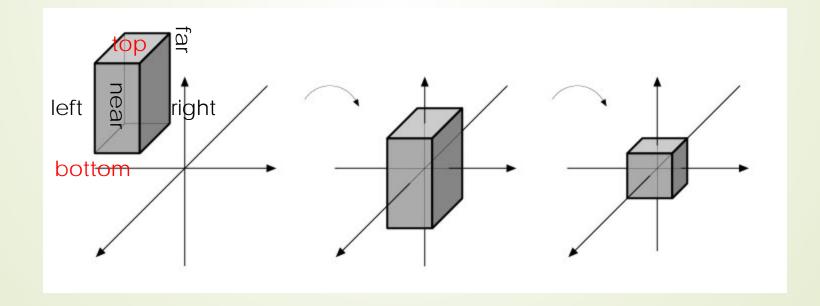
Unit cube is also used for perspective proj.

Simplifies clipping

Orthogonal projection



- The "unitcube projection" is invertible
- Simple to derive
 - a translation followed by a scale

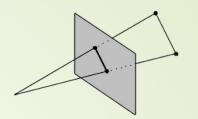


What about those homogenenous coordinates?

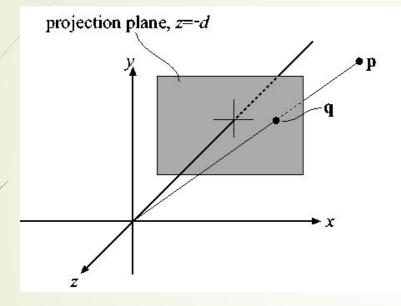
- pw=0 for vectors, and pw=1 for points $\mathbf{p} = \begin{pmatrix} p_x & p_y & p_z & p_w \end{pmatrix}^T$
- What if pw is not 1 or 0?
- Solution is to divide all components by pw

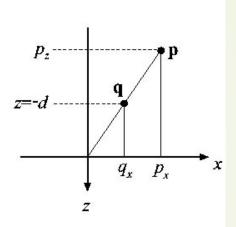
$$\mathbf{p} = (p_x / p_w \quad p_y / p_w \quad p_z / p_w \quad 1)^T$$

- Gives a point again!
- Can be used for projections, as we will see



Perspective projection



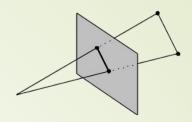


$$\frac{q_x}{p_x} = \frac{-d}{p_z} \implies q_x = -d\frac{p_x}{p_z}$$

$$\mathbf{P}_{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

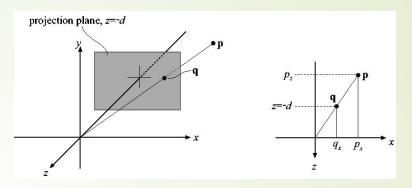
For y:
$$q_y = -d \frac{p_y}{p_z}$$

Perspective projection



$$\mathbf{P}_{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix} \qquad \mathbf{P}_{p}\mathbf{p} = ?$$

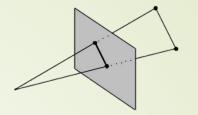
$$\mathbf{P}_{p}\mathbf{p}=?$$



$$\mathbf{P}_{p}\mathbf{p} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{pmatrix} \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} p_{x} \\ p_{y} \\ p_{z} \\ -p_{z}/d \end{pmatrix} \Rightarrow \mathbf{q} = \begin{pmatrix} -dp_{x}/p_{z} \\ -dp_{y}/p_{z} \\ -dp_{z}/p_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} -dp_{x}/p_{z} \\ -dp_{y}/p_{z} \\ 1 \end{pmatrix}$$

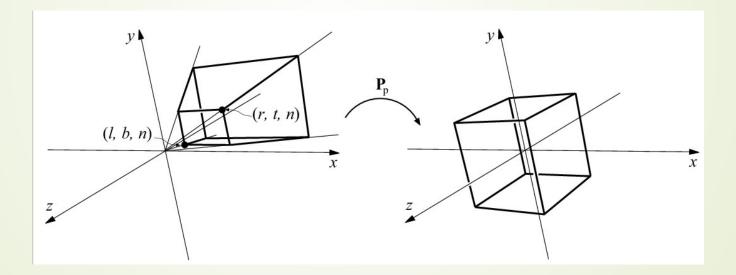
$$q_x = -d\frac{p_x}{p_z} \qquad q_y = -d\frac{p_y}{p_z}$$

The "arrow" is the homogenization process



Perspective projection

- Again, the determinant is 0 (not invertible)
- To make the rest of the pipeline the same as for orhogonal projection:
 - project into unit-cube



- Not much different from P_p
- Do not collapse z-coord to a plane