CS451 Ray Casting

J yh-Ming Lien
Department of Computer SCience
George Mason University

Rendering Review

Camera

Scene

Rendering Review

Projection-Based Rendering

- Projection-based Rendering
- Lights: directional, point, spot
- Interact with vertices
- Shading
- determine pixel'scolors
- Ex: G LSL fragment shaders
- Programmable pipeline opens up many possibilities

Non-Photo Realistic Rendering

$$
\dagger
$$

Projection-Based Rendering

- More on programmable pipeline
- Input Assembler
- Before Vertex Shader
- Assembles data:
- Vertex Buffer
- Index Buffer
- PrimitiveType
- Output Merger
- After Pixel Shader
- Z-buffer testing
- Blending
- Write to rendertarget

Ray Casting

- For every pixel
- Construct a ray from the eye
- Forevery object in the scene
- Find intersection with the ray
- Keep if closest

Ray Casting Based Shading

- Forevery pixel
- Construct a ray from the eye
- Forevery object in the scene
- Find intersection with the ray
- Keep if closest
- Shade

Ray Casting

Ray Casting Shadow

Ra y Tra cing

- Ray casting = eye rays only
- Ray tracing = include secondary rays

Questions?

Ray

- Representation
- Origin (Point)
- Direction (Vector)
- Parametric line
- $P(t)=0+t V, \forall t>0$

Albrecht Durer's Ray C asting

- Dürer demonstrates the device Alberti called a 'veil'.
- The screen and corresponding grid on the artist's drawing paperare repeated for the viewer in the pattem of windows looking overa landscape.

http://aauerbach.info/research/theory/theoretical_eye.html

Ray Generation

- In 2D

Ray Generation

Ray Generation

- In 3D

$$
r=(x * u, A * y * v, D * w)
$$

A is the aspect ration

$$
D=\frac{1}{\tan (\theta / 2)}
$$

Image plane
Parameterized coordinates

$$
\begin{aligned}
& -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

Ray Generation for Orthogra phic Camera

- Orthographic Camera
- Origin =
- Direction =

Other Types of Cameras

- Fisheye (spherical projection)
- Omnimax (Imaxdome)
- Panoramic camera
$\square \quad$.

