CS451 Ray Tracing

Jyh-Ming Lien

Department of Computer SCience

George Mason University

Based on notes from http://stellar.mit.edu/

Review: Intersections

Ray-Sphere
Quadratic: $ax^2 + bx + c = 0$ Solution: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Ray Tracing

- Intersect all objects
- color = ambient term
- For every light
 - cast shadow ray
 - color += local shading term
- If mirror
 - color += color_reflection * trace reflected ray
- If transparent
 - color += color_transparent * trace transmitted ray

Ray Tracing

Stopping Criteria (depth, engery, etc)

- Intersect all objects
- color = ambient term
- For every light
 - cast shadow ray
 - color += local shading term
- If mirror
 - color += color_reflection * trace reflected ray
- If transparent
 - color += color_transparent * trace transmitted ray

Ray Tree

Visualizing the ray tree

Antialiasing

Supersampling – create many random rays per pixel

Shadow

Shadow ray (between the point and the light)

Soft Shadow

In real world, most shadows have soft boundary

Due to the types, numbers, distances of light

http://www.pa.uky.edu/~sciworks/light/preview/bulb2.htm

http://renderman.pixar.com/resources/current/rps/softShadows.html

penumbra

Reflection

- Cast ray symmetric with respect to the normal
 - $\blacksquare R = V 2 (V \cdot N) N$
- Amount of Reflection
 - Multiply by reflection coefficient (color)

Reflection

A single reflection ray

Reflection

- Cast ray symmetric with respect to the normal
- Multiply by reflection coefficient (color)
- add epsilon to the ray so the origin of the ray is a bit off the surface
 - Offset the ray in the normal direction of the surface

Refraction

- Cast ray in refracted direction
 - Relative index of refraction

$$\frac{\sin \theta_T}{\sin \theta_i} = \frac{n_i}{n_T} = n_r$$

- Amount of Refraction
 - Multiply by transparency coefficient (color)

Refraction

- Cast ray in refracted direction
 - $\blacksquare M = (N \cos \theta_i I) / \sin \theta_i$
 - $T = -N\cos\theta_T + M\sin\theta_T$

$$T = [n_r(N \cdot I) - \sqrt{1 - n_r^2(1 - (N \cdot I)^2)}]N - n_r$$

• Total internal reflection if $(1 - n_r^2(1 - (N \cdot I)^2) < 0)$

$$\frac{\sin \theta_T}{\sin \theta_i} = \frac{n_i}{n_T} = n_r$$

Refraction

• Total internal reflection if $(1 - n_r^2(1 - (N \cdot I)^2) < 0$

Image courtesy of Frazzydee on Wikimedia Commons. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/

Refraction with Many Rays

Refraction with Many Rays

Reflecting spheres with glossiness of 0.9, 0.8, and 0.6

Refracting spheres with glossiness of 0.9, 0.8, and 0.6

Data Structure for Ray tracing

- Bounding volume hierarchy
 - Bounding spheres, boxes, etc
 - Quadtree/Octree
 - Binary space partition tree

http://www.bogotobogo.com/Games/spatialdatastructure.php and http://www.cs.prin ceton.edu/courses/archive/fall00/cs426/lectures/raycast2/sld018.htm

Questions?

- What we learned today
 - Ray tracing framework
 - Reflect
 - Refraction
 - Soft shadow, reflection, refraction