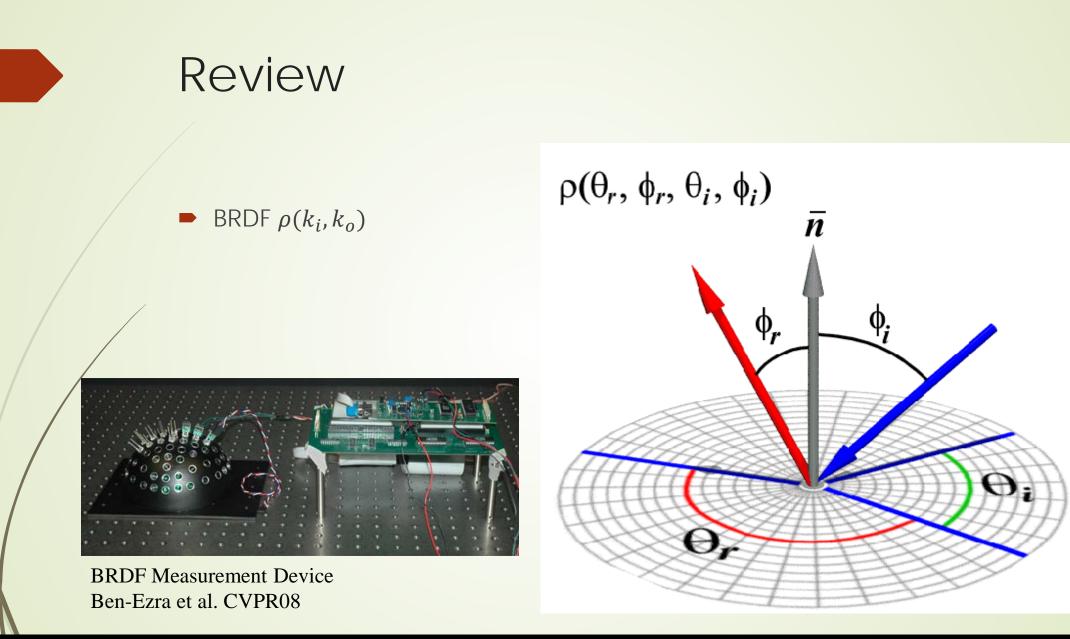
CS451 Ambient Occlusion

Jyh-Ming Lien

Department of Computer SCience

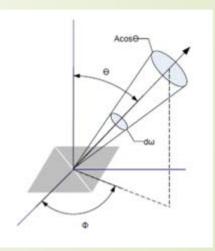
George Mason University


Most materials are from "Reaistic Ray Tracing" by Shirley and Morley

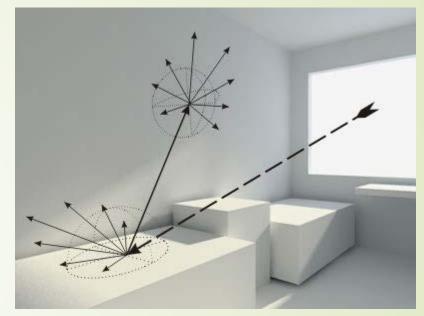
Update (in case you didn't know...)

- Your grades have been posted
 - PA1~PA5, all quizzes, and midterm
- PA 6 solution has been posted
- PA 7 is due Dec. 8th, 11:59pm
 - Examples have been posted
 - Remember that your light source is NOT from openGL
 - Change from double inshadow(Point3d& p) to bool inshadow(Point3d& p, Point3d& light)
 - Any questions on this?
- PA 8 on ambient occlusion is optional (10%)

Review

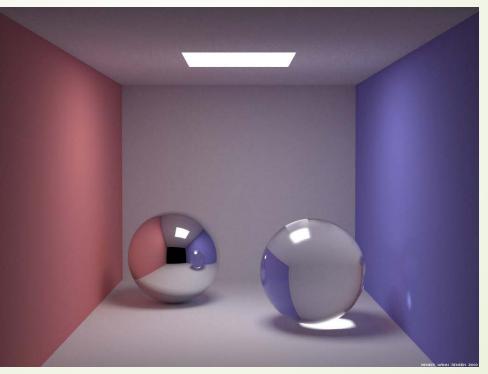

- How much light hits a point x
 - Irradiance $\Phi = \frac{\Delta q}{\Delta A \Delta t \Delta \lambda}$ has unit $J/sec/m^2/nm$
- BRDF (bidirectional reflectance distribution function)
 - A 4D function $\rho(k_i, k_o)$ where k_i and k_o are points on the hemisphere
 - $\rho(k_i, k_o)$ defines the reflectance of all possible incoming and outgoing directions
 - For ideal diffuse surface Lambertian $\rho(k_i, k_o)$ is a constant

Radiance


- How much light hits a point x from a given direction
 - Imagine a truncated cone placed around the point x
 - Solid angle, steradiance, between 0 and 4π
 - The truncated cone can tilt around the hemisphere centered at x
 - radiance $L = \frac{\Delta \Phi}{\Delta \omega \cos \theta}$ has unit *J*/sec/m²/nm/steradiance
 - Important: Radiance is invariant to the distance to light
 - Finally, the irradiance Φ at x from all directions is

•
$$\Phi = \int_{\omega} L(\omega) \cos \theta \, d\omega = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\frac{\pi}{2}} L(\phi, \theta) \cos \theta \sin \theta \, d\theta \, d\phi$$

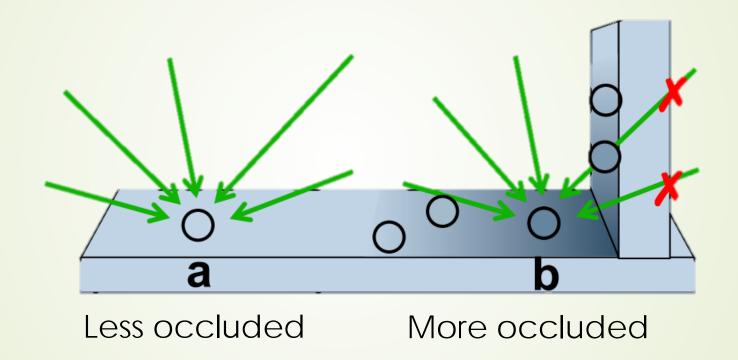
Path Tracing


- What do we do with all these?
- Think about path tracing
 - A photon comes out from a light source
 - With certain wave length, direction, and energy
 - Hit a surface in direction k_i
 - Leaves the surface in direction k_o
 - $\rho(k_i, k_o)$ is applied to determine the new properties of the photon
 - The photon continues to hit surfaces until it hits the film (near camera plane)

http://blender3d.cz/others/tnt/

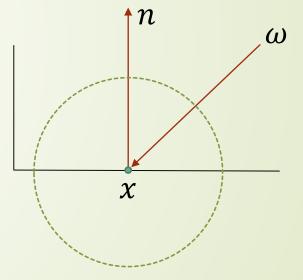
Path Tracing

What is the difference between your ray tracing and this path traced image?

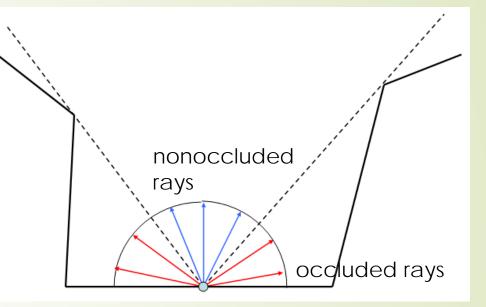

http://www.thepolygoners.com/tutorials/GIIntro/GIIntro.htm

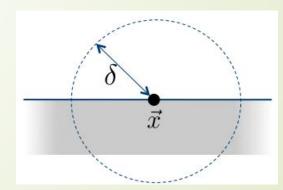
Ambient Occlusion

- So far, our ambient term is merely a constant
- Ambient occlusion is a global illumination method that allows us better estimate the ambient term
 - Render objects as if place them in a cloudy day


Basic idea of Ambient Occlusion

Ambient Occlusion


Formulation


- Ambient = $\frac{1}{\pi} \int L(\omega) \cdot V \cdot (\omega \cdot n) d\omega$
- Recall that $L(\omega)$ is radiance from the direction of ω
 - $L(\omega)$ is usually assumed to be a constant
- V is an indicator function
 - 0 if the steradiance ω is blocked
 - 1 otherwise

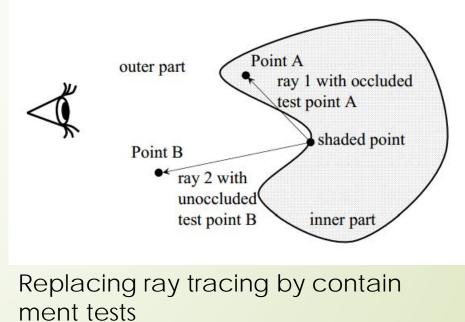
Ambient Occlusion

- Approximate using ray tracing
 - Shoot N rays in the open direction
 - Detect if a ray can see the sky
 - Occlusion is then $\frac{n}{N}$ if *n* rays are blocked
 - Practically, we should define a range as the influence range
 - If the ray hits something in the ball of radius δ then the ray is blocked
 - Otherwise the ray is free

Variants of AO Approximations

- Ray traced AO
- Crytek SSAO (used in Crysis)
 - Use fragment shader per-pixel depth information
 - Sample in sphere around the given point
 - Project each sample to screen space to get the coordinates into the depth buffer
 - If the sample is behind the depth in the buffer, it contributes to the occlusion factor

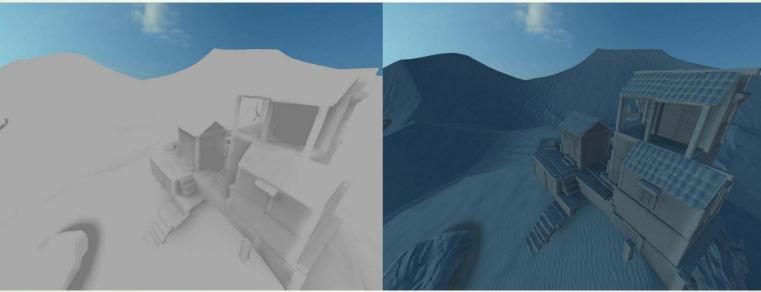
http://john-chapman-graphics.blogspot.co m/2013/01/ssao-tutorial.html


Screen-Space Ambient Occlusion (SSAO)

Variants of AO Approximations

Volumetric AO

- measures how big portion of the tangent sphere of the surface belongs to the set of occluded points
- Fastest screen-space method


Volumetric Ambient Occlusion

Volumetric Ambient Occlusion

8 samples 800x600 resolution 33000 triangles NV8800GT

Variants of AO Approximations

- Image-based ambient light
 - Using cube-map, environment map, etc, to determine $L(\omega)$

By David Rosen

Blur image to reduce alias

Conclusion

. . . .

- We briefly introduced and reviewed the global illumination
- We go over the basic ideas of ambient occlusion
- There are many variants for ambient occlusion approximation
 - Ray tracing (slow but most realistic)
 - Image-space ambient occlusion (fast but has artifacts)
 - ambient occlusion with cube map