CS451 Ambient Occlusion

J yh-Ming Lien
Department of Computer SCience
George Mason University

BRDF

- BRDF (bidirectional reflectance distribution function)
- A 4D function $\rho\left(k_{i}, k_{o}\right)$ where k_{i} and k_{o} are points on the hemisphere
- $\rho\left(k_{i}, k_{o}\right)$ defines the reflectance of all possible incoming and outgoing directions
- Forideal diffuse surface Lambertian $\rho\left(k_{i}, k_{o}\right)$ is a constant

BRDF

- BRDF $\rho\left(k_{i}, k_{o}\right)$
$\rho\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)$

Radiance

- How much light hits a point x from a given direction
- Imagine a truncated cone placed around the point x
- Solid angle, steradiance, between 0 and 4π
- The truncated cone can tilt a round the hemisphere centered at x
- radiance $L=\frac{\Delta \Phi}{\Delta \omega \cos \theta}$ has unit $\mathrm{J} / \mathrm{sec} / \mathrm{m}^{2} / \mathrm{nm} /$ steradiance
- Important: Radiance is invariant to the distance to light
- Finally, the irradiance Φ at x from all directions is
- $\Phi=\int_{\omega} L(\omega) \cos \theta d \omega=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\frac{\pi}{2}} L(\phi, \theta) \cos \theta \sin \theta d \theta d \phi$

Path Tracing

- What do we do with all these?
- Think about path tracing
- A photon comes out from a light source
- With certain wave length, direction, and energy
- Hit a surface in direction k_{i}

http://blender3d.cz/others/tnt/
- Leavesthe surface in direction k_{o}
- $\rho\left(k_{i}, k_{o}\right)$ is applied to determine the new properties of the photon
- The photon continues to hit surfaces until it hits the film (near camera plane)

Path Tracing

- What is the difference between your ray tracing and this path traced image?

http://www.thepolygoners.com/tutorials/GIIntro/GIIntro.htm

Ambient Occlusion

- So far, our ambient term is merely a constant
- Ambient occlusion is a global illumination method that allows us better estimate the a mbient term
- Render objects as if place them in a cloudy day

Basic idea of Ambient Occlusion

Ambient Occlusion

- Formulation
- Ambient $=\frac{1}{\pi} \int L(\omega) \cdot V \cdot(\omega \cdot n) d \omega$
- Recall that $L(\omega)$ is radiance from the direction of ω
- $L(\omega)$ is usually assumed to be a constant
- V is an indicator function
- 0 if the steradiance ω is blocked
- 1 otherwise

Ambient Occlusion

- Approximate using ray tracing
- Shoot N rays in the open direction
- Detect if a ray can see the sky
- Occlusion is then $\frac{n}{N}$ if n rays are blocked

- Practically, we should define a range δ asthe influence range
- If the ray hits something in the ball of radius δ then the ray is blocked
- Otherwise the ray is free

Variants of AO Approximations

- Ray traced AO
- Crytek SSAO (used in Crysis)
- Use fragment shader per-pixel depth information
- Sample in sphere a round the given point
- Project each sample to screen space to get the coordinatesinto the depth buffer
- If the sample is behind the depth in the buffer, it contributesto the occlusion factor

Screen-Space Ambient Occlusion (SSAO)

Variants of AO Approximations

- Volumetric AO
- measures how big portion of the tangent sphere of the surface belongs to the set of occluded points
- Fastest screen-space method

Replacing ray tracing by containment tests

Volumetric Ambient Occlusion

Variants of AO Approximations

- Image-based ambient light
- Using cube-map, environment map, etc, to determine $L(\omega)$

Blur image to reduce alias

Conclusion

- We briefly introduced BRDF
- We go overthe basic ideas of a mbient occlusion
- There are many variants for a mbient occlusion approximation
- Ray tracing (slow but most realistic)
- Image-space ambient occlusion (fast but has artifacts)
- ambient occlusion with cube map
-

