CS451 Ambient Occlusion

Jyh-Ming Lien

Department of Computer SCience

George Mason University

BRDF

- BRDF (bidirectional reflectance distribution function)
 - ▶ A 4D function $\rho(k_i, k_o)$ where k_i and k_o are points on the hemisphere
 - $ightharpoonup
 ho(k_i, k_o)$ defines the reflectance of all possible incoming and outgoing directions
 - ► For ideal diffuse surface Lambertian $\rho(k_i, k_o)$ is a constant

BRDF

■ BRDF $\rho(k_i, k_o)$

BRDF Measurement Device Ben-Ezra et al. CVPR08

Radiance

- How much light hits a point x from a given direction
 - Imagine a truncated cone placed around the point x
 - Solid angle, steradiance, between 0 and 4π
 - The truncated cone can tilt around the hemisphere centered at x
 - radiance $L = \frac{\Delta\Phi}{\Delta\omega\cos\theta}$ has unit $J/sec/m^2/nm/steradiance$
 - Important: Radiance is invariant to the distance to light
 - Finally, the irradiance Φ at x from all directions is

$$\Phi = \int_{\omega} L(\omega) \cos \theta \, d\omega = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\frac{\pi}{2}} L(\phi, \theta) \cos \theta \sin \theta \, d\theta \, d\phi$$

Path Tracing

- What do we do with all these?
- Think about path tracing
 - A photon comes out from a light source
 - With certain wave length, direction, and energy
 - lacktriangle Hit a surface in direction k_i
 - Leaves the surface in direction k_o
 - $ightharpoonup
 ho(k_i, k_o)$ is applied to determine the new properties of the photon
 - The photon continues to hit surfaces until it hits the film (near camera plane)

http://blender3d.cz/others/tnt/

Path Tracing

What is the difference between your ray tracing and this path traced

image?

http://www.thepolygoners.com/tutorials/GIIntro/GIIntro.htm

Ambient Occlusion

- So far, our ambient term is merely a constant
- Ambient occlusion is a global illumination method that allows us better estimate the ambient term
 - Render objects as if place them in a cloudy day

Basic idea of Ambient Occlusion

Ambient Occlusion

- Formulation
 - Ambient = $\frac{1}{\pi} \int L(\omega) \cdot V \cdot (\omega \cdot n) d\omega$
 - ▶ Recall that L(ω) is radiance from the direction of ω
 - $ightharpoonup L(\omega)$ is usually assumed to be a constant
 - V is an indicator function
 - ightharpoonup 0 if the steradiance ω is blocked
 - 1 otherwise

Ambient Occlusion

- Approximate using ray tracing
 - Shoot N rays in the open direction
 - Detect if a ray can see the sky
 - Occlusion is then $\frac{n}{N}$ if n rays are blocked
 - Practically, we should define a range δ as the influence range
 - If the ray hits something in the ball of radius δ then the ray is blocked
 - Otherwise the ray is free

Variants of AO Approximations

- Ray traced AO
- Crytek SSAO (used in Crysis)
 - Use fragment shader per-pixel depth information
 - Sample in sphere around the given point
 - Project each sample to screen space to get the coordinates into the depth buffer
 - If the sample is behind the depth in the buffer, it contributes to the occlusion factor

http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html

Screen-Space Ambient Occlusion (SSAO)

Variants of AO Approximations

- Volumetric AO
 - measures how big portion of the tangent sphere of the surface belongs to the set of occluded points
 - Fastest screen-space method

Replacing ray tracing by containment tests

Volumetric Ambient Occlusion

Variants of AO Approximations

- Image-based ambient light
 - Using cube-map, environment map, etc, to determine $L(\omega)$

By David Rosen

Blur image to reduce alias

Conclusion

- We briefly introduced BRDF
- We go over the basic ideas of ambient occlusion
- There are many variants for ambient occlusion approximation
 - Ray tracing (slow but most realistic)
 - Image-space ambient occlusion (fast but has artifacts)
 - ambient occlusion with cube map
 - ...