Barycentric Coordinates

Adopted from Ju Tao and Scott Schaefer's lecture notes

Coordinates

- Homogeneous coordinates
- Given points $v_{\Sigma}=\left\{v_{1}, \cdots, v_{i}, \cdots\right\}$
- Express a new point x as affine combination of v_{Σ}

$$
x=\sum b_{i} v_{i}, \quad \text { where } \sum b_{i}=1
$$

- b_{i} are called homogeneous coordinates
- Barycentric if all $b_{i} \geq 0$

Applications

- Boundary interpolation

$$
f(x)=\sum b_{i} f_{i}
$$

- Color/Texture interpolation
- Mapping

$$
x^{\prime}=\sum b_{i} v_{i}^{\prime}
$$

- Shell texture
- Image/Shape deformation

Boundary Value Interpolation

- Given p_{i}, compute w_{i} such that $v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}}$
- Given values f_{i} at p_{i}, construct a function

$$
\hat{f}(v)=\frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}
$$

- Interpolates values at vertices
- Linear on boundary
- Smooth on interior

Boundary Value Interpolation

- Given p_{i}, compute w_{i} such that $v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}}$
- Given values f_{i} at p_{i}, construct a function

$$
\hat{f}(v)=\frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}
$$

- Interpolates values at vertices
- Linear on boundary
- Smooth on interior

Wachspress Coordinates

$$
\phi_{i}(\mathbf{x})=\frac{w_{i}(\mathbf{x})}{\sum_{j=1}^{n} w_{j}(\mathbf{x})},
$$

Mean Value Coordinates

$$
w_{i}(\mathbf{x})=\frac{\tan \left(\alpha_{i-1} / 2\right)+\tan \left(\alpha_{i} / 2\right)}{\left|\mathbf{v}_{i}-\mathbf{x}\right|},
$$

General Construction

- Instead of a circle, pick any closed curve G

1. Project each edge $T=\left\{v_{1}, v_{2}\right\}$ of the polygon onto a curve segment \bar{T} on G.
2. Write the integral of outward unit normal of each arc, r^{T}, using the two vectors:

$$
r^{T}=u_{1}^{T}\left(v_{1}-x\right)+u_{2}^{T}\left(v_{2}-x\right)
$$

3. The integral of outward unit normal over any closed curve is zero (Stoke's Theorem). So the following weights are homogeneous:

$$
w_{i}=\sum_{T: v_{i} \in T} u_{i}^{T}
$$

Our General Construction

- To obtain r^{T} :
- Apply Stoke's Theorem

$$
r^{T}=d_{1} n_{1}^{T}+d_{2} n_{2}^{T}
$$

Examples

- Some interesting G result in known coordinates
- We call G the generating curve

Wachspress
(G is the polar dual)

Mean value
(G is the unit circle)

Discrete harmonic (G is the original polygon)

General Construction in 3D

- Pick any closed generating surface G

1. Project each triangle $T=\left\{v_{1}, v_{2}, v_{3}\right\}$ of the polyhedron onto a surface patch \bar{T} on G.
2. Write the integral of outward unit normal of each patch, r^{T}, using three vectors:

$$
r^{T}=\sum_{i=1}^{3} u_{i}^{T}\left(v_{i}-x\right)
$$

3. The integral of outward unit normal over
 any closed surface is zero. So the following weights are homogeneous:

$$
w_{i}=\sum_{T: v_{i} \in T} u_{i}^{T}
$$

Comparison

convex polygons
(Wachspress Coordinates)

closed polygons (Mean Value Coordinates)

Comparison-Non-convex polygons

- Boundary interpolation

Non-convex polygons (Wachspress Coordinates)

Non-convex polygons (Mean Value Coordinates)

Comparison-Non-convex polygons

Non-convex polygons (Wachspress Coordinates)

Non-convex polygons (Mean Value Coordinates)

3D Mean Value Coordinates

3D Mean Value Coordinates

- Exactly same as 2D but must compute mean vector n for a given spherical triangle

3D Mean Value Coordinates

- Exactly same as 2D but must compute mean vector m for a given spherical triangle
- Build wedge with face normals
n_{k}

$$
\sum_{k=1}^{3} \frac{1}{2} \theta_{k} n_{k}+m=0
$$

General Construction in 3D

- To obtain r^{T} :
- Apply Stoke's Theorem

$$
r^{T}=\sum_{i=1}^{3} d_{i-1, i+1} n_{i}^{T}
$$

Examples

Deformations using Barycentric Coordinates

Deformations using Barycentric Coordinates

Deformations using Barycentric Coordinates

Deformations using Barycentric Coordinates

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	0.7 seconds	0.02 seconds

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	0.7 seconds	0.02 seconds
Real-time!			

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
98 triangles	96,966 triangles	1.1 seconds	0.05 seconds

