Barycentric Coordinates

Adopted from Ju Tao and Scott Schaefer's lecture notes

Coordinates

- Homogeneous coordinates
 - Given points $v_{\Sigma} = \{v_1, \dots, v_i, \dots\}$
 - Express a new point $\,x\,$ as affine combination of $\,v_{\scriptscriptstyle\Sigma}$

$$x = \sum b_i v_i$$
, where $\sum b_i = 1$

- $-\ b_i$ are called homogeneous coordinates
- Barycentric if all $b_i \ge 0$

Applications

Boundary interpolation

$$f(x) = \sum b_i f_i$$

- Color/Texture interpolation
- Mapping

$$x' = \sum b_i v'_i$$

- Shell texture
- Image/Shape deformation

Boundary Value Interpolation

- Given P_i , compute w_i such that $v = \frac{\sum_i w_i p_i}{\sum_i w_i}$
- Given values f_i at p_i , construct a function

$$\hat{f}(v) = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

- Interpolates values at vertices
- Linear on boundary
- Smooth on interior

Boundary Value Interpolation

- Given P_i , compute w_i such that $v = \frac{\sum_i w_i p_i}{\sum_i w_i}$
- Given values f_i at p_i , construct a function

$$\hat{f}(v) = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

- Interpolates values at vertices
- Linear on boundary
- Smooth on interior

Wachspress Coordinates

$$\phi_i(\mathbf{x}) = \frac{w_i(\mathbf{x})}{\sum_{j=1}^n w_j(\mathbf{x})},$$

$$w_i(\mathbf{x}) = \frac{A(\mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+1})}{A(\mathbf{x}, \mathbf{v}_{i-1}, \mathbf{v}_i)A(\mathbf{x}, \mathbf{v}_i, \mathbf{v}_{i+1})},$$

$$\mathbf{v}_i$$

 \mathbf{v}_{i-1}

Mean Value Coordinates

$$w_i(\mathbf{x}) = \frac{\tan(\alpha_{i-1}/2) + \tan(\alpha_i/2)}{|\mathbf{v}_i - \mathbf{x}|},$$
 \mathbf{v}_{i+1}
 \mathbf{v}_i

 \mathbf{v}_{i-1}

General Construction

- Instead of a circle, pick any closed curve G
 - 1. Project each edge $T = \{v_1, v_2\}$ of the polygon onto a curve segment \overline{T} on G.
 - 2. Write the **integral of outward unit normal** of each arc, r^T , using the two vectors:

$$r^{T} = u_{1}^{T}(v_{1} - x) + u_{2}^{T}(v_{2} - x)$$

3. The integral of outward unit normal over any closed curve is zero (Stoke's Theorem). So the following weights are homogeneous:

$$w_i = \sum_{T: v_i \in T} u_i^T$$

Our General Construction

- To obtain r^T :
 - Apply Stoke's Theorem

$$r^T = d_1 n_1^T + d_2 n_2^T$$

Examples

- Some interesting G result in known coordinates
 - We call G the generating curve

General Construction in 3D

- Pick any closed generating surface G
 - 1. Project each triangle $T = \{v_1, v_2, v_3\}$ of the polyhedron onto a surface patch \overline{T} on G.
 - 2. Write the **integral of outward unit normal** of each patch, r^T , using three vectors:

$$r^T = \sum_{i=1}^3 u_i^T (v_i - x)$$

3. The integral of outward unit normal over any closed surface is zero. So the following weights are homogeneous:

$$w_i = \sum_{T: v_i \in T} u_i^T$$

Comparison

convex polygons (Wachspress Coordinates)

closed polygons (Mean Value Coordinates)

Comparison-Non-convex polygons

Boundary interpolation

Non-convex polygons (Wachspress Coordinates)

Non-convex polygons (Mean Value Coordinates)

Comparison-Non-convex polygons

Non-convex polygons (Wachspress Coordinates)

Non-convex polygons (Mean Value Coordinates)

3D Mean Value Coordinates

3D Mean Value Coordinates

 Exactly same as 2D but must compute mean vector mfor a given spherical triangle

3D Mean Value Coordinates

- Exactly same as 2D but must compute mean vector m for a given spherical triangle
- Build wedge with face normals n_k

$$\sum_{k=1}^{3} \frac{1}{2} \theta_k n_k + m = 0$$

General Construction in 3D

- To obtain r^T :
 - Apply Stoke's Theorem

$$r^{T} = \sum_{i=1}^{3} d_{i-1,i+1} n_{i}^{T}$$

Examples

Wachspress (G: polar dual)

Mean value (G: unit sphere)

Discrete harmonic (G: the polyhedron)

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	0.7 seconds	0.02 seconds

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
216 triangles	30,000 triangles	0.7 seconds	0.02 seconds

Real-time!

Deformation Examples

Control Mesh	Surface	Computing Weights	Deformation
98 triangles	96,966 triangles	1.1 seconds	0.05 seconds

