CS451
Deformation
skeleton-subspace deformation Jyh-Ming Lien Department of Computer SCience George Mason University

Skeleton-subspace deformation

- A popular method for animating a character is to use a skeleton, which is composed of bones. The skeleton is embedded into the polygon mesh. When the skeleton is animated, the vertices of the polygon mesh will be accordingly animated

How does SSD Look Like

Skeleton

- Skeleton editing and embedding
- The skeleton template such as 3ds Max biped is positioned in the default pose.
- The bones are edited
- The skeleton is made to fit to the polygon mesh

Important Terminology

- Zero pose or default pose
- Binding pose
- Bone/World space
- Skinning
- Blending weight

Binding pose

Skinning

- Skinning is the process of attaching a skin (mesh) to an underlying articulated skeleton
- skeletal subspace deformation (SSD)
- A.K.A smooth skinning algorithm, blended skinning, multi-matrix skinning, linear blend skinning,, and sometimes just skinning

rigid-body

vertex blending

Skeleton Hierarchy

- The bones are connected at joints, which allow the rigid skeleton to animate in an articulated fashion

head

L.clavicle L.forearm

Hierarchy saves your live

Rigid Skinning

- Rendering characters as rigid components, e.g. as a robot
- $v^{\prime}=\mathrm{W} v$, where W is world transform of the lower bone

An unbent knee with skin attached to joints 1 and 2

Every vertex is attached to exactly one joint, so as the knee bends, we get some distortion

Space Change between Bones

- When the forearm moves, for example, v_{f} has to move accordingly. It is simply achieved if v_{f} is defined in the forearm's object space.
- Every world-space vertex of the default pose needs to be transformed into the object space of the bone (which we call bone space henceforth). For example, v_{f} will be transformed into the forearm's bone space so as to have the coordinates $(2,0)$.

Space Change between Bones (cont'd)

- Let us consider the opposite direction firs \dagger
- i.e., from the bone space to the world space
- Given a bone-to-world transform, its inverse can convert a world-space vertex into the bone space
- Ex1: to-parent transform of the forearm, which transforms a forearm vertex to the space of its parent

$$
M_{f, p} v_{f}=\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
6 \\
0 \\
1
\end{array}\right) \begin{aligned}
& \text { Note this is in } 3 \times 3 \text { homogenous } \\
& \text { coordinates }
\end{aligned}
$$

- Ex2: to-parent matrix of the hand.

$$
\begin{aligned}
& v_{h}^{\prime}=M_{h, p} v_{h}=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right) \\
& M_{f, p} v_{h}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
8 \\
0 \\
1
\end{array}\right) \\
& M_{f, p} v_{h}^{\prime}=M_{f, p} M_{h, p} v_{h}=\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
8 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Bone Space to World Space

- The root node (pelvis) is associated with a transform used to position and orient it in the world space for the default pose. Let us denote the world matrix by $M_{1, d}$.

- The spine's world transform

$$
M_{2, d}=M_{1, d} M_{2, p}
$$

- The clavicle's world transform

$$
\begin{aligned}
M_{3, d} & =M_{1, d} M_{2, p} M_{3, p} \\
& =M_{2, d} M_{3, p}
\end{aligned}
$$

- Let's generalize

$$
M_{i, d}=M_{i-1, d} M_{i, p}
$$

World Space to Bone Space

- So far, we have considered the world transform from the bone space to the world space. However, what is needed in an articulatedbody animation is its inverse.

$$
\begin{aligned}
& M_{i, d}=M_{i-1, d} M_{i, p} \\
& M_{i, d}^{-1}=M_{i, p}^{-1} M_{i-1, d}^{-1}
\end{aligned}
$$

- Once the default pose is fixed, the inverse world transforms can be computed for all bones
- In the default pose, $M_{i D^{-1}}$ can be immediately obtained
- Computing $M_{i, d^{-1}}$ requires $M_{i-1, d^{-1}}$ to be computed in advance, and therefore the skeleton hierarchy is travdersed top down

(d) World transforms for all bones

(e) Inverse world transforms for all bones

Forward Kinematics

- The inverse of the world transform converts a world-space vertex "in the binding pose" to the i-th bone's space
- Now the i-th bone is animated. Then, the vertices belonging to the bone are accordingly animated. The animation is often called local transform

- For rendering, the animated vertices should be transformed back to the world space. (Then, they will be transformed to the camera space and so forth, along the pipeline.) Let us call the transform matrix $M_{5, w}$.

Forward Kinematics (cont'd)

- As the first step for computing the world-space position of "animated v_{5}," let us find its coordinates in the upper arm's space.

- The upper arm can also be animated. Let $M_{4, w}$ denote the matrix that transforms the animated vertices of the upper arm into the world space. Then, $M_{5, w}$ for transforming "animated v_{5} " into the world space is defined.

$$
M_{5, w}=M_{4, w} M_{5, p} M_{5, l}
$$

- Let's generalize.

$$
M_{i, w}=M_{i-1, w} M_{i, p} M_{i, l}
$$

Forward Kinematics (cont'd)

- When the artist defines the animated pose of the i-th bone, $M_{i, 1}$ is obtained
- $M_{i, p}$ was obtained from the default pose.
- So, computing $M_{i, w}$ simply requires $M_{i-1, w}$ to be computed in advance.
- $M_{1, w}$ representing the pose of the animated pelvis is defined by the artist.
- We can compute the world transforms of all bones "in the animated pose" also in the top-down fashion.

world

 space- When v_{d} and v_{w} denote the world-space vertices "in the default pose" and "in the animated pose," respectively, we have the following relation:

$$
v_{w}=M_{i, w} M_{i, d}^{-1} v_{d}
$$

Smooth Skinning

- Skinning is the process of attaching a skin (mesh) to an underlying articulated skeleton
- skeletal subspace deformation (SSD)
- A.K.A smooth skinning algorithm, blended skinning, multi-matrix skinning, linear blend skinning,, and sometimes just skinning

vertex blending

Smooth Skinning

- In smooth skinning, v_{2} is transformed not only by $M_{f, w} \mathcal{M}_{f, d^{-1}}$ but also by $M_{u, w} M_{u, d^{-1}}$. Then, the transformed vertices are interpolated using the predefined weights. The same applies to v_{1} and v_{3}.

	upper arm	forearm
v_{1}	0.7	0.3
v_{2}	0.5	0.5
v_{3}	0.3	0.7

Smooth Skinning Algorithm

- Suppose that w_{5} and w_{6} are equal
- They are the same point defined in different sub-spaces

$$
\begin{aligned}
& v_{5}=M_{5, d}^{-1} v_{d} \\
& v_{6}=M_{6, d}^{-1} v_{d} \\
& w_{5} M_{5, w} v_{5}+w_{6} M_{6, w} v_{6} \\
& w_{5} M_{5, w} M_{5, d}^{-1} v_{d}+w_{6} M_{6, w} M_{6, d}^{-1} v_{d} \\
& v_{w}=\sum_{i=1}^{n} w_{i} M_{i, w} M_{i, d}^{-1} v_{d}
\end{aligned}
$$

Smooth Skinning

- Given a mesh vertex v and a list of weights w_{i} for each bone, the position of v is defined as
$v^{\prime}=\sum w_{i} \mathbf{W}_{i} \mathbf{B}_{i}^{-1} v$
- \mathbf{B}_{i} is matrix at binding pose for bone i (a.k.a. binding matrix)
- W_{i} is world matrix for bone i at a given pose (specified by animator)
- How is w_{i} determined?!
- Again, similar to FFD, $\sum w_{i}=1$
- Why does most binding post look like this:

