
CS451Real-time 
Rendering Pipeline

JYH-MING LIEN
DEPARTMENT OF COMPUTER SCIENCE
GEORGE MASON UNIVERSITY

Based on Tomas Akenine-Möller’s lecture note

1



You say that you render a ”3D 
scene”, but what does it mean?

 First of all, to take a picture, it takes a camera
 Decides what should end up in the final image

Point
camera

dir near

far

fov (angle)

 Create image of geometry inside gray region
 Used by OpenGL, DirectX, ray tracing, etc.

2



You say that you render a ”3D 
scene”, but what does it mean?

 A 3D scene includes:
 Geometry (triangles, lines, points, and more)

A triangle consists of 3 vertices
 A vertex is 3D position, and may

 Material properties of geometry
 Light sources
 Textures (images to glue onto the geometry)

include normals, texture 
coordinates and more

3



Rendering Primitives
 Use graphics hardware (GPU) for real time computation…
 These GPUs can render points, lines, triangles very efficiently
 A surface is thus an approximation by a number of such 

primitives

4



Fixed-Function Pipeline
 The pipeline is the ”engine” that creates images from 3D scenes
 Three conceptual stages of the pipeline:

 Application (executed on the CPU)

 Geometry

 Rasterizer

Application Geometry Rasterizer3D
sceneinput Image

outputTransformation matrices
(World, View, Projection)

Textures / Color
Lighting information

Game
CAD/Maya

GIS

5



Back to the pipeline:
The APPLICATION stage

 Executed on the CPU
 Means that the programmer decides what happens here

 Examples:
 Collision detection
 Speed-up techniques
 Animation

 Most important task: send rendering primitives (e.g. triangles) to the 
graphics hardware

Application Geometry Rasterizer

6



The GEOMETRY stage

 Task: ”geometrical” operations on the input data (e.g. triangles)
 Allows:

 Move objects (matrix multiplication)

 Move the camera (matrix multiplication)

 Compute lighting at vertices of triangle

 Project onto screen (3D to 2D matrix multiplication)

 Clipping (remove triangles outside the screen)

 Map to window

Application Geometry Rasterizer

7



Animate objects and camera

 Can animate in many different ways with 4x4 matrices 
 Example: 

 Before displaying a torus on screen, a matrix that represents a rotation 
can be applied. The result is that the torus is rotated.

 Same thing with camera (this is possible since motion is relative)
 In openGL, this is called ModelView matrix

Application Geometry RasterizerApplication Geometry Rasterizer

8



The RASTERIZER stage
 Main task: take output from GEOMETRY and turn into visible 

pixels on screen

 add textures and various other per-pixel operations
 And visibility is resolved here: sorts the primitives in the z-

direction

Application Geometry Rasterizer

9



Rewind! Let’s take a closer look

 The programmer ”sends” down primtives to be rendered through 
the pipeline (using API calls)

 The geometry stage does per-vertex operations
 The rasterizer stage does per-pixel operations
 Next, scrutinize geometry and rasterizer

10



GEOMETRY stage in more detail
 The model transform
 Originally, an object is in model space
 Move, orient, and transform geometrical objects into 

world space
 Ex: a sphere is defined with origin at (0,0,0) with radius 1
 Translate, rotate, scale to make it appear elsewhere

 Done per vertex with a 4x4 matrix multiplication
 How does the matrix look like? Can it be any 4x4 matrix?

Application Geometry RasterizerApplication Geometry Rasterizer

11



The view transform

 You can move the camera in the same manner
 But apply inverse transform to objects, so that camera looks down 

negative z-axis (as in OpenGL)

z x

Application Geometry RasterizerApplication Geometry Rasterizer

12



Lighting
 Compute lighting at vertices

light

Geometry

blue

red green

Rasterizer

 mimics how light in nature behaves
– uses empirical models, hacks, and some real theory

 Much more about this in later lectures

Application Geometry RasterizerApplication Geometry Rasterizer

white

white
white

13



Projection

 Two major ways to do it
 Orthogonal (useful in fewer applications)

 Perspective (most often used)
 Mimics how humans perceive the world, i.e., objects’ apparent size 

decreases with distance

Application Geometry RasterizerApplication Geometry Rasterizer

Orthogonal Perspective 

14



Projection

 Also done with a matrix multiplication
 Pinhole camera (left), analog used in CG (right)

Application Geometry RasterizerApplication Geometry Rasterizer

Pinhole camera CG camera 

rendered 
image

film

Frustum

15



Clipping and Screen Mapping
 Square (cube) after projection
 Clip primitives to square

 Screen mapping, scales and translates square so that it ends 
up in a rendering window

 These screen space coordinates together with Z (depth) are 
sent to the rasterizer stage

Application Geometry RasterizerApplication Geometry Rasterizer

16



Summary

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Application Geometry RasterizerApplication Geometry Rasterizer

17



The RASTERIZER in more detail

 Scan-conversion
 Find out which pixels are inside the primitive

 Texturing
 Put images on triangles

 Interpolation over triangle
 Z-buffering

 Make sure that what is visible from the camera really is displayed

 Double buffering
 And more…

Application Geometry Rasterizer

18



Scan conversion
 Triangle vertices from GEOMETRY is input
 Find pixels inside the triangle

 Or on a line, or on a point

 Do per-pixel operations on these pixels:
 Interpolation

 Texturing

 Z-buffering

 And more…

Application Geometry RasterizerApplication Geometry Rasterizer

19



Interpolation
 Interpolate colors over the triangle

 Called Gouraud interpolation

blue

red green

Application Geometry Rasterizer

Gouraud flat

20



Texturing

 Uses and other applications
 More realism
 Bump mapping
 Pseudo reflections
 Light mapping
 ... many others

+ =

 texturing is like gluing images onto geometrical 
object

Application Geometry Rasterizer

Bump mapping

21



Z-buffering
 The graphics hardware is pretty stupid

 It ”just” draws triangles

 However, a triangle that is covered by a more closely 
located triangle should not be visible

 Assume two equally large tris at different depths

Triangle 1
near

Triangle 2
far

Draw 1 then 2

incorrect

Draw 2 then 1

correct

22



 Would be nice to avoid sorting…
 The Z-buffer (aka depth buffer) solves this
 Idea:

 Store z value (depth) at each pixel
 When scan-converting a triangle, compute z at each pixel on triangle
 Compare triangle’s z to Z-buffer z-value
 If triangle’s z is smaller, then replace Z-buffer and color buffer
 Else do nothing

 Can render in any order (if no blending is involved)

Z-buffering
Application Geometry Rasterizer

23



Double buffering

 The monitor displays one image at a time
 So if we render the next image to screen, then rendered primitives 

pop up
 And even worse, we often clear the screen before generating a 

new image
 A better solution is ”double buffering”

Application Geometry Rasterizer

24



 Use two buffers: one front and one back
 The front buffer is displayed
 The back buffer is rendered to
 When new image has been created in back buffer, swap front and 

back

Double buffering
Application Geometry Rasterizer

25



Programmable pipeline

 Programmable shading has become a hot topic
 Vertex shaders

 Pixel shaders

 Adds more control and much more possibilities for the programmer

Application Geometry Rasterizer

HARDWARE

Vertex shader
program

Pixel shader
program

Application Geometry Rasterizer

bus

CPU
Very general

Command GPU GPU
Highly specialized

e.g, vector calculations
Highly parallelized

More to come when we talk about shaders!!

26


	CS451Real-time �Rendering Pipeline
	You say that you render a ”3D scene”, but what does it mean?
	You say that you render a ”3D scene”, but what does it mean?
	Rendering Primitives
	Fixed-Function Pipeline
	Back to the pipeline:�The APPLICATION stage	
	The GEOMETRY stage
	Animate objects and camera
	The RASTERIZER stage
	Rewind! 	Let’s take a closer look
	GEOMETRY stage in more detail
	The view transform
	Lighting
	Projection
	Projection
	Clipping and Screen Mapping
	Summary
	The RASTERIZER in more detail
	Scan conversion
	Interpolation
	Texturing
	Z-buffering
	Z-buffering
	Double buffering
	Double buffering
	Programmable pipeline

