CS451Real-time
Rendering Pipeline

JYH-MING LIEN
DEPARTMENT OF COMPUTER SCIENCE
GEORGE MASON UNIVERSITY

Based on Tomas Akenine-Madller’s lecture note



You say that you render a ”’3D
scene”, but what does it mean?

» First of all, to take a picture, it takes a camera

» Decides what should end up in the final image

e Create image of geometry inside gray region
e Used by OpenGL, DirectX, ray tracing, etc.

Point
e=InElee®  fov (angle)




You say that you render a ”’3D 3
scene”, but what does it mean?

» A 3D scene includes:

» Geometry (triangles, lines, points, and more)

» A triangle consists of 3 vertices
» A vertexis 3D position, and may \

» Material properties of geometry
» Light sources

4

Include normals, texture
coordinates and more

» Textures (images to glue onto the geometry)



Rendering Primitives

» Use graphics hardware (GPU) for real time computation...
» These GPUs can render points, lines, triangles very efficiently

» A surface is thus an approximation by a number of such
primitives




Fixed-Function Pipeline

» The pipeline is the “engine” that creates images from 3D scenes
» Three conceptual stages of the pipeline:

» Application (executed on the CPU)

» Geometry

» Rasterizer

Input @ Application I—V Geometry I—> Rasterizer

Game Transformation matrices Textures / Color output
CAD/Maya (World, View, Projection) Lighting information

GIS




‘Applicationl—bl Geometry H Rasterizer

Back to the pipeline:
The APPLICATION stage

» Executed on the CPU

» Means that the programmer decides what happens here
» Examples:

» Collision detection

» Speed-up techniques

» Animation

» Most important task: send rendering primitives (e.qg. triangles) to the
graphics hardware



‘Applicationl—bl Geometry H Rasterizer

The GEOMETRY stage

» Task: ’geometrical” operations on the input data (e.g. triangles)

» Allows:
» Move objects (matrix multiplication)
» Move the camera (matrix multiplication)
Compute lighting at vertices of triangle
Project onto screen (3D to 2D matrix multiplication)

Clipping (remove triangles outside the screen)

Vo V-V .V

Map to window



‘Applicationl—vl Geometry H Rasterizer

Animate objects and camera

» Can animate in many different ways with 4x4 matrices

» Example:

» Before displaying a torus on screen, a matrix that represents a rotation
can be applied. The result is that the torus is rotated.

» Same thing with camera (this is possible since motion is relative)
» In openGlL, this is called ModelView matrix



‘Applicationl—bl Geometry H Rasterizer

The RASTERIZER stage

» Main task: take output from GEOMETRY and turn into visible
pixels on screen

D .

e add textures and various other per-pixel operations

e And visibility is resolved here: sorts the primitives in the z-
direction




Rewind! Let’s take a closer look

» The programmer ”"sends” down primtives to be rendered through
the pipeline (using API calls)

» The geometry stage does per-vertex operations
» The rasterizer stage does per-pixel operations

» Next, scrutinize geometry and rasterizer

10



‘Applicationl—-l Geometry H Rasterizer
GEOMETRY stage In more detall 11

» The model transform
» Originally, an object is iIn model space

» Move, orient, and transform geometrical objects into
world space
» Ex: a sphere is defined with origin at (0,0,0) with radius 1
» Translate, rotate, scale to make it appear elsewhere

» Done per vertex with a 4x4 matrix multiplication

» How does the matrix look like? Can it be any 4x4 matrix?



. ‘Applicationl—vl Geometry H Rasterizer
The view transform 12

» You can move the camera in the same manner

» But apply inverse transform to objects, so that camera looks down
negative z-axis (as in OpenGL)

N




Hlelglilgle

» Compute lighting at vertices

/

white - @ilidhi

/ o white

white

‘Applicationl—vl Geometry H Rasterizer

—'l Geometry |—>

e mimics how light in nature behaves

blue

red

green

13

Rasterizer

- uses empirical models, hacks, and some real theory
e Much more about this in later lectures



: . ‘Applicationl—ul Geometry H Rasterizer
Projection v

» Two major ways to do it
» Orthogonal (useful in fewer applications)

» Perspective (most often used)

» Mimics how humans perceive the world, i.e., objects’ apparent size
decreases with distance

4

Orthogonal Perspective



: . ‘Applicationl—ul Geometry H Rasterizer
Projection 15

» Also done with a matrix multiplication

» Pinhole camera (left), analog used in CG (right)

rendered
image

Pinhole camera CG camera




‘Applicationl—vl Geometry H Rasterizer
Clipping and Screen Mapping 16

» Square (cube) after projection
» Clip primitives to square

(3 @,

e Screen mapping, scales and translates square so that it ends
up in a rendering window

e These screen space coordinates together with Z (depth) are
sent to the rasterizer stage



summary

el

model space

VN

3’@
&

-

O

O

1

world space

‘Applicationl—vl Geometry H Rasterizer

.
\\

-

DyQ
&

O
i}

O
BN

©

compute lighting

projection

Image space

\
world space

clip

Ccamera space

@

map to screen

17



‘Applicationl—bl Geometry H Rasterizer
The RASTERIZER iIn more detall 18

» Scan-conversion
» Find out which pixels are inside the primitive
» Texturing
» Put images on triangles
» Interpolation over triangle
» Z-buffering
» Make sure that what is visible from the camera really is displayed
» Double buffering
» And more...



. ‘Applicationl—vl Geometry H Rasterizer
Scan conversion 19

» Triangle vertices from GEOMETRY is input
» Find pixels inside the triangle
» Oron aline, or on a point
» Do per-pixel operations on these pixels:
» Interpolation
» Texturing
» Z-buffering

» And more...



. ‘Applicationl—bl Geometry H Rasterizer
Interpolation 20

» Interpolate colors over the triangle

» Called Gouraud interpolation

blue

= green

flat Gouraud



. ‘Applicationl—bl Geometry H Rasterizer
Texturing 21

e texturing is like gluing images onto geometrical
object

» Uses and other applications
» More realism
» Bump mapping
» Pseudo reflections
» Light mapping
» ... many others Bump mapping




Z-buffering 22

» The graphics hardware is pretty stupid
» It ’just” draws triangles

» However, a triangle that is covered by a more closely
located triangle should not be visible

» Assume two equally large tris at different depths

P

Triangle 1  Triangle 2 Draw 1then2 Draw 2thenl
near far

iIncorrect correct




. ‘Applicationl—bl Geometry H Rasterizer
/-buffering 23

» Would be nice to avoid sorting...
» The Z-buffer (aka depth buffer) solves this

» ldea:
» Store z value (depth) at each pixel

» When scan-converting a triangle, compute z at each pixel on triangle
» Compare triangle’s z to Z-buffer z-value

» If triangle’s z is smaller, then replace Z-buffer and color buffer

» Else do nothing

» Canrenderin any order (if no blending is involved)



. ‘Applicationl—bl Geometry H Rasterizer
Double buffering 24

» The monitor displays one image at a time

» So if we render the next image to screen, then rendered primitives
pop up

» And even worse, we often clear the screen before generating a
new image

» A better solution is ’double buffering”



. ‘Applicationl—bl Geometry H Rasterizer
Double buffering 25

» Use two buffers: one front and one back
» The front buffer is displayed
» The back buffer is rendered to

» When new image has been created in back buffer, swap front and
back



: g IAppIicationH Geometry H Rasterizer
Programmable pipeline 26

» Programmable shading has become a hot topic
» Vertex shaders
» Pixel shaders

» Adds more control and much more possibilities for the programmer

bus
m i = N (q:%% Application Geometry Rasterizer
CPU
\ | .
CommandlcEd pechUR Vertex shader || Pixel shader
Highly specialized
e.g, vector calculations program program

Highly parallelized
More to come when we talk about shaders!!



	CS451Real-time �Rendering Pipeline
	You say that you render a ”3D scene”, but what does it mean?
	You say that you render a ”3D scene”, but what does it mean?
	Rendering Primitives
	Fixed-Function Pipeline
	Back to the pipeline:�The APPLICATION stage	
	The GEOMETRY stage
	Animate objects and camera
	The RASTERIZER stage
	Rewind! 	Let’s take a closer look
	GEOMETRY stage in more detail
	The view transform
	Lighting
	Projection
	Projection
	Clipping and Screen Mapping
	Summary
	The RASTERIZER in more detail
	Scan conversion
	Interpolation
	Texturing
	Z-buffering
	Z-buffering
	Double buffering
	Double buffering
	Programmable pipeline

