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ABSTRACT
Deep learning has become a go-to solution for many problems. This
increases the importance of our ability to understand and improve
these technologies. While many tools exist to support debugging
deep learning models (e.g., DNNs), few attempt to provide support
for understanding the root cause of unexpected behavior. Causal
testing is a technique that has been shown to help developers un-
derstand and fix the root causes of defects. Causal testing may
be particularly valuable in DNNs, where causality is often hard
to understand due to the abstractions DNNs create to represent
data. In theory, causal testing is capable of supporting root cause
debugging in various types of programs and software systems. How-
ever, the only implementation that exists is in Java and was not
implemented as an end-to-end tool or for use on DNNs, making
validation of this theory difficult. In this paper, we introduce py-
holmes, a prototype tool that supports causal testing on Python
programs, for both DNNs and shallow programs. For more informa-
tion about py-holmes’ internal process, see our GitHub repository:
https://go.gmu.edu/pyHolmes_Public_Repo. Our demo video can
be found here: https://go.gmu.edu/pyholmes_demo_2024.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computing methodologies → Neural networks; •
Applied computing→ Optical character recognition.
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1 INTRODUCTION AND MOTIVATION
As deep learning (DL) has become more ubiquitous, there has been
an increased interest in promoting software engineering practices,
such as testing and debugging, in the context of deep learningmodel
development [1]. Researchers have proposed a variety of solutions
to support debugging deep neural networks (DNNs) [2–11], includ-
ing attempts at supporting root-cause debugging. However, to our
knowledge and unlike Causal Testing [12], these interventions have
not been evaluated regarding their ability to help developers un-
derstand the causes of their code’s behavior. Furthermore, existing
tools for debugging DNNs lack support for verifiable explanations
(such as counterfactual ones) which would aid reasoning about the
root causes of defects [1, 5, 6, 11, 13].

Causal testing is a technique that has been shown to help develop-
ers understand the root causes of unexpected behavior [12]. Unlike
existing debugging techniques that help programmers understand
what the defect was and and where it occurred, causal testing helps
programmers answer the why, such that they can produce fixes
that address the root cause of the defect.

Causal testing has the potential to support root cause debugging
for both DNNs and traditional (shallow) software. However, the
current implementation (Holmes1) is only designed for shallow
software in Java, whereas Python is much more prevalent for DL
software [14]. Furthermore, the current version of Holmes is a
proof of concept that requires additional effort to make it fully
functional. To this end, we present py-holmes, a prototype tool that
provides Python causal testing support for both DNNs and shallow
programs.

In deep learning, py-holmes can offer two primary benefits. First,
py-holmes explains failed tests by generating counterfactual input
samples, which are similar to the original test input, but on which
the model exhibits less loss, or perhaps passes the test. The differ-
ences between these new samples and the original reveal which
features originally confounded the model, and these explanations
can be verified by running these samples through the user’s model
and confirming the model’s loss is as py-holmes reported. This veri-
fiability could be useful in fairness testing, where surrogate models
are commonly trained to explain mistakes made by a base model,
but often fail to accurately represent its decision-making [15]. Sec-
ond, py-holmes could help developers identify underrepresented
regions of the feature space, and point the way toward new natu-
ral samples that could improve the model’s performance in those
regions.
1 https://holmes.cs.umass.edu

https://orcid.org/0000-0002-7660-8421
https://orcid.org/0000-0002-9303-4677
https://orcid.org/0000-0001-6242-398X
https://orcid.org/0000-0001-6987-5196
https://orcid.org/0000-0002-0271-9647
https://go.gmu.edu/pyHolmes_Public_Repo
https://go.gmu.edu/pyholmes_demo_2024
https://doi.org/10.1145/3663529.3663807
https://doi.org/10.1145/3663529.3663807
https://holmes.cs.umass.edu


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Wren McQueary, Sadia Afrin Mim, Md Nishat Raihan, Justin Smith, and Brittany Johnson

Find scope-
similar user-
written tests

Get original 
execution 

path

Original failing test
self.assertTrue(word_to_int(“can’t”) < word_to_int(“door”))

Find user-written tests that are 
scope-similar & call-similar

Create variants of similar user-
written tests and original test

Run fuzzed 
variant tests

Get
execution 
paths of 
fuzzed 

variant tests

Filter for 3 
passed and 3 

failed tests 
with most 

similar 
execution 
paths to 
original 

execution 
path

Display these 
tests, along 

with 
pass/fail 
status, 

source diffs 
from 

original, and 
execution 

paths from 
original

“can’t”,“door” → “can’t”, “loor”

“caax”, “door”

“can’t”, “deoor”

“can’t”, “jdodr”

“cana’t”, “door”

“can’”, “door”

…

Figure 1: Overview of py-holmes’ shallow mode.

2 PY-HOLMES: PYTHON CAUSAL TESTING
Py-holmes shows the developer a set of variant test inputs, where
each is minimally different from the original failing input in terms
of both value difference and execution difference, but elicits
program behavior that passes, or comes closer to passing, the origi-
nal unit test. As a step forward from Holmes, py-holmes includes
a novel DL mode alongside the existing shallow mode. In shallow
mode, py-holmes generates counterfactual inputs for unit tests of
shallow software, similarly to Holmes. In DL mode, py-holmes gen-
erates counterfactual inputs for DNNs implemented with PyTorch.
Along with these inputs, py-holmes also presents the developer
with a summary of code coverage differences (for tests of shallow
software) or neuron activation differences (for tests of deep neural
networks) versus the original input. These inputs and execution
difference summaries are intended to aid the developer in under-
standing why the original failure occurred. Figure 2 shows a sample
report for a shallow test, where the removal of an apostrophe from
an input string caused a previously failing test to pass. Figure 5
shows a sample report for a DL test.

Py-holmes’ two modes use similar principles, with different im-
plementations. Table 1 analogizes the DL and shallow modes.

Table 1: Comparison of py-holmes’ deep and shallow modes.

Principle Shallow DL
Input Literals Tensor

Similar value
generation

Random character ed-
its (for strings), adding
noise (for numbers)

Assistive sample gener-
ation

Execution
similarity
metric

𝑑𝑙𝑖𝑛𝑒 + 10𝑑𝑐𝑎𝑙𝑙
Cosine distance of final
embedding layer activa-
tions

Test case fil-
tering

Find 3 passing and 3 fail-
ing tests that elicit the
most similar execution
trace to the original

Find 3 passing and 3 fail-
ing inputs that elicit the
most similar activation
pattern to the original

Figure 2: Portion of a py-holmes shallow report

2.1 Shallow Mode Process
Figure 1 depicts py-holmes’ internal process in shallow mode.

2.1.1 Generating Variant Tests. Py-holmes produces variant tests
by perturbing (“fuzzing”) one or more literals contained in a failing
test. To avoid unintentionally fuzzing oracle-defining literals, py-
holmes constructs a directed graph of the unit test method in which
each literal and variable name is represented as a node. For each “=”
assignment that appears in the method, directed edges are drawn
from all literals and variable names on the right side of the “=” to
all variable names on the left side. Any literal node from which an
oracle node can be reached by following this graph is considered to
be involved in defining an oracle, and is therefore protected from
fuzzing. When an input value has been designated for fuzzing, the
nature of the fuzzing depends on its type. A string will undergo
random character edits (eg "door" to "dmor"), whereas a number
will undergo slight perturbations (eg 3 to 2, or 10.5 to 10.641).

If the user’s repository contains any other test methods that
are both scope-similar (importing a nonempty subset of the same
user-written files) and call-similar (calling the same functions in
the same order) to the original test method, fuzzed variants are
produced from these tests as well. This allows py-holmes to create
valid variants of string enums without needing to chance upon
them via random character edits.

2.1.2 Filtering Variant Tests for Similar Execution to the Original.
Py-holmes runs the original test, as well as all variant tests produced
in the previous step, and records their full execution traces. Next
py-holmes filters the variant tests for the 3 passing and 3 failing
tests that had the most similar execution traces to the original
test’s execution trace. The distance between two execution traces
is 𝑑𝑙𝑖𝑛𝑒 + 10𝑑𝑐𝑎𝑙𝑙 , where 𝑑𝑙𝑖𝑛𝑒 is the number of single-line changes
to the sequence of source line executions, and 𝑑𝑐𝑎𝑙𝑙 is the number
of changes to what functions are called, and at what points in the
trace. Py-holmes concludes by showing the user a report containing
these 6 tests, along with diffs for their source code and execution
traces when compared to the original test.

2.2 DL Mode Process
Figure 3 depicts py-holmes’ internal process in DL mode.

2.2.1 Generating Variant Inputs. Py-holmes runs the original fail-
ing input (a PyTorch tensor) through the model under test, and
obtains the loss gradient with respect to that input. This gradient is
then multiplied by an adjustment rate set by the user and subtracted
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Figure 3: Overview of py-holmes’ DL mode.

from the input to create a new input that will elicit a lower loss.
This process is identical to adversarial sample generation, except
it descends the loss gradient instead of ascending it [16]. Inspired
by this name, we call our approach assistive sample generation. Py-
holmes iterates this process, generating a sequence of inputs, each
one incrementally farther from the original but eliciting smaller
losses from the model as long as the adjustment rate is low enough.

2.2.2 Filtering Variant Inputs for Similar Execution to the Original.
Next py-holmes filters the variant inputs produced in the previous
step for the 3 passing and 3 failing inputs that caused the most
similar neuron activation pattern to the original in the final embed-
ding layer of the model. Activation similarity is measured using
cosine distance (defined as 1 − 𝑠

2 , where 𝑠 is the cosine similarity).
Py-holmes concludes by showing the user a report containing these
6 inputs, along with the model’s loss on each input, the neuron
activation distance of the final embedding versus the original, and
the value of the new input tensor.

3 PY-HOLMES WITH NEURAL NETWORKS
Suppose a user is building a fully connected DNN to classify digits
from the MNIST database. The MNIST database contains labeled,
grayscale images of handwritten digits 0-9, with a resolution of
28x28 pixels [17]. Given an image from the MNIST database, the
user’s model guesses which digit is written in the image.

We used the MNIST database to informally evaluate py-holmes
during its development, because the database’s pictoral nature
made it easy to visualize py-holmes’ changes to inputs. However,
py-holmes’ DL mode can be used on any tensor input, including
non-pictoral inputs such as vectors. We intend to perform a user
study of py-holmes on a greater diversity of datasets, along with a
comparitive analysis between py-holmes and other tools.

After training their model, the user evaluates it on a validation
dataset. They notice that their model misclassifies a particularly
obvious handwritten 5, despite otherwise performing well. They
want more insight into why the failure occurred, in order to make
a more informed decision about how to adjust the way they train
their model.

The user decides to use py-holmes to find nearby inputs that
would have passed, thereby explaining the failure. They write a

Figure 4: The user-written unit test. The line x =
torch.Tensor([...]).to(device) is shortened for brevity. At
its full length, it defines each value in the input tensor.

Figure 5: py-holmes’ final report in DL mode. For brevity,
this figure shows only one passing test and one failing test,
and the input x tensors are shortened to tensor([...]).

unittest-style unit test of their model on that input, shown in Fig-
ure 4, inside of a new file, which they choose to name my_test.py.
This unit test instantiates all of the required variables for py-holmes
to run in its deep learning mode. The purpose of each variable in
this unit test is discussed further in our artifact’s readme file.

Now the user calls py-holmes from the command line with
python py_holmes.py –dl -f my_test.py -l all. Py-holmes
finds variants of the user’s input and prints the readout shown in
Figure 5, which gives the three passing and three failing inputs
which elicited the smallest changes in the final embedding layer.

Although the tensors contain visual information, py-holmes
outputs its tensors as text. The user decides to use matplotlib to
visualize the tensors and heatmaps of the pixel value changes. This
visualization is shown in Figure 6 and can be reproduced by running
the Jupyter Notebook mnist_demo.ipynb in our artifact. From the
visualization, the user concludes that their model failed because it
over-relies on 5s that cross into the red areas of the plots.

Prior research has demonstrated that adversarial sample gen-
eration can be used as an effective data augmentation approach
to improve robustness [18], but that introducing non-natural ad-
versarial samples into a training dataset may reduce overall accu-
racy [19]. Because py-holmes’ variant inputs are unnatural and
assistive rather than adversarial, they should not be added directly
to the training dataset, but they can guide a developer’s search
for new natural data to add to the training dataset. In the case of
MNIST, a developer can hand-draw new natural samples informed
by py-holmes’ variant inputs, as shown in Figure 7. We hypothe-
size that new natural samples avoiding densely red areas would
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Figure 6: Variant inputs found by py-holmes.

Figure 7: Users can search for new samples (right) using a
variant input’s difference from the original (left).

especially improve the model’s accuracy on inputs near the original
failing input. However, this would require the inputs to be close
enough to uphold local monotonicity in the loss gradient, because
the new user-drawn sample would be an approximate reflection
of the sample generated by py-holmes across the original sample
in the feature space. We hypothesize that a version of py-holmes
which instead ascends the loss gradient could produce useful sam-
ples for augmenting the training dataset even outside the zone of
local monotonicity, because no acts of reflection would be involved
in generating the samples. We intend to test these hypotheses soon
in our user study. We also hope to further integrate py-holmes with
PyTorch, to eliminate the user’s overhead work of writing unit tests
for the inputs they wish to pass to py-holmes.

4 RELATEDWORK
Most relevant to this work is the development of the original Causal
Testing tool, Holmes [12], which is tailored for JUnit tests. This tool
exhibits methodological parallels with py-holmes, especially in the
generation of slightly varied inputs and runtimes.

Pynguin is an automated regression testing tool, but it is only
compatible with Python versions 3.10 and above, whereas common
Python versions for DNN development are 3.7 and 3.8 [20].

Hypothesis is a prominent property-based testing tool for Python.
It identifies flaws in users’ code by searching for test inputs that
falsify an intended invariant for that code [21]. Hypothesis and py-
holmes could be used in tandem when debugging shallow software,
with Hypothesis identifying faults, and py-holmes explaining them.

Tools also exist for debugging DNNs. TensorFuzz mirrors the
functionality of Hypothesis, except for DNNs rather than shallow
software [5]. DeepConcolic aims to maximize coverage by generat-
ing a comprehensive test suite [6]. DeepHunter is a coverage-guided
fuzz testing framework for DNNs, which uses metamorphic muta-
tion guided by an array of coverage criteria, and can outperform
existing methods in terms of coverage and defect detection, espe-
cially during DNN quantization for platform migration [7].

LIME generates similar inputs by deleting portions of the origi-
nal input, such as segments from images and words from sentences.
By running these modified inputs through the model under test,
it can obtain enough behavioral information to train a simple, in-
terpretable linear model in a small region of the input space. This
linear model can then be used to generate explanations [8].Whereas
LIME’s explanations are obtained by observing the linear model
(which is only accurate if local linearity holds), py-holmes’ expla-
nations are the variant inputs themselves, paired with the model’s
loss on each one. Unlike LIME’s explanations, py-holmes’ can be
verified by running the inputs back through the model.

Grad-CAM is a tool for convolutional neural networks (CNNs),
which overlays a heatmap onto an input image to highlight the re-
gions that were most influential in determining the model’s output
on a task. Like py-holmes on the MNIST task, Grad-CAM identifies
changes in the input image which would have reduced the model’s
loss on a multiclass classification task, producing a verifiable coun-
terfactual explanation which can also guide a developer’s search for
more training inputs. In addition to classification tasks, Grad-CAM
supports captioning and visual question-answering tasks. However,
it is limited to CNNs with image-based tasks [9].

DeepDiagnosis debugs DNNs by observing models during train-
ing, scrutinizing a range of error scenarios, and delivering practical
solutions for correcting errors. In contrast to prevailing techniques,
DeepDiagnosis demonstrates enhanced precision and efficiency in
identifying faults, locating bugs, and recognizing symptoms [10].

MODE and the solution proposed by Cadamuro et. al are also
tools for finding training data biases in DNNs [2, 11]. These tools
focus on identifying and repairing model flaws, while py-holmes
could complement them by offering insight into the flaws’ causes.

5 CONTRIBUTIONS & FUTUREWORK
We introduced py-holmes, a tool for helping programmers under-
stand the root causes of Python unit test failures in traditional and
deep learning programs. We characterized how a software devel-
oper can use py-holmes to find such a root cause and work to adjust
their software accordingly. We are currently designing a user study
to evaluate py-holmes’ ability to support root cause understanding
and debugging in practical scenarios.
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