Intro to Software Testing
Chapter 8.1.2

Logic Coverage

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt
Combinatorial Coverage

This is simple, neat, clean, and comprehensive ...
But can be **expensive**
– Impractical for predicates with more than 3 or 4 clauses
The literature has lots of suggestions – some confusing
The general idea is simple:

Test each clause independently from the other clauses

Getting the details right is hard
What exactly does “independently” mean?
The book presents this idea as “**making clauses active**" ...
Active Clauses (8.1.2)

Clause coverage has a **weakness**: The values do not always make a difference.

Consider the CC tests for $P = (a \& (b \mid c))$:

- **Test 1**: $(true \& (true \mid true))$
- **Test 2**: $(false \& (false \mid false))$

Clauses b and c are ignored!

To really test the results of a clause, the clause should be the **determining factor** in the value of the predicate.
Active Clauses

Determination

Clause c_i determines the value of its predicate when the other clauses have certain values.

If c_i is changed, the value of the predicate changes.

c_i is called the *major clause*.

Other clauses are *minor clauses*.

This is called *making the clause active*.
Determining Predicates

- **Goal**: Find tests for each clause when the clause determines the value of the predicate

- This is formalized in a *family of criteria* that have subtle, but very important, differences

<table>
<thead>
<tr>
<th>$P = A \lor B$</th>
<th>$P = A \land B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>if $B = true$, p is always true.</td>
<td>if $B = false$, p is always false.</td>
</tr>
<tr>
<td>so if $B = false$, A determines p.</td>
<td>so if $B = true$, A determines p.</td>
</tr>
<tr>
<td>if $A = false$, B determines p.</td>
<td>if $A = true$, B determines p.</td>
</tr>
</tbody>
</table>
In-Class Exercise

Making clauses active

\[P = (a \& (b \mid c)) \]

Write truth values for \(b \) and \(c \) that make clause \(a \) active
For example: \(P_a : b=?? \) or \(c=?? \)
Write truth values for \(a \) and \(c \) that make clause \(b \) active
Write truth values for \(a \) and \(b \) that make clause \(c \) active
In-Class Exercise

Making clauses active

\[P = (a \& (b \mid c)) \]

Write truth values for \(b \) and \(c \) that make clause \(a \) active
For example: \(Pa : b=?? \) or \(c=?? \)
Write truth values for \(a \) and \(c \) that make clause \(b \) active
Write truth values for \(a \) and \(b \) that make clause \(c \) active

\[
\begin{align*}
Pa &: (b=true \text{ or } c=true) \\
\text{compactly: (b or c)} \\
Pb &: (a \text{ and } !c) \\
Pc &: (a \text{ and } !b)
\end{align*}
\]
Active Clause Coverage

Active Clause Coverage (ACC): For each clause c_i in each predicate p, choose values for the other clauses to make c_i active

Create two tests, one where c_i evaluates to true and the other where c_i evaluates to false

- This is a form of MCDC, which is required by the FAA for safety critical software
ACC Ambiguity

Do the minor clauses have to have the same values for both tests?
- Restricted ACC: They do
- Correlated ACC: They do not, but the predicate has to have different values
- General ACC: They do not, and the predicate does not have to have different values either

The FAA requires **MCDC** (modified condition decision coverage) for flight critical software
- Original definition of MCDC was GACC
- For years, some inspectors required RACC, some CACC
- **MCDC is now equivalent to CACC**
- We are skipping GACC and RACC
CACC Example

| | a | b | c | a & (b | c) |
|---|---|---|---|---------|
| 1 | T | T | T | T |
| 2 | T | T | F | T |
| 3 | T | F | T | T |
| 4 | T | F | T | T |
| 5 | F | T | T | F |
| 6 | F | T | F | F |
| 7 | F | F | T | F |
| 8 | F | F | F | F |

For **a** to determine the value of the predicate

\[P_a : b=true \text{ or } c = true \]

So we can use ANY OF the 9 pair of rows: (1,5), (1,6), (1,7), (2,5),(2,6),(2,7), (3,5),(3,6),(3,7)

For **b** to determine the value of the predicate

\[P_b : a=true \text{ and } c = false \]

Rows 2 and 4

For **c** to determine the value of the predicate

\[P_c : a=true \text{ and } b = false \]

Rows 3 and 4
In-Class Exercise
Making clauses active

\[P = ((a \& b) \mid c \mid (d \& e)) \]

Pick any one of the 5 clauses
Call it \textbf{ci}
Solve for \textbf{ci}
Answer by giving truth values for the other 4 clauses that make your \textbf{ci} determine the value of the predicate
In-Class Exercise

Making clauses active

P = ((a\&b) | c | (d\&e))

Pick any one of the 5 clauses
Call it ci
Solve for ci
Answer by giving truth values for the other 4 clauses that make your ci determine the value of the predicate P = ((a\&b) | c | (d\&e))

Pa = b and !c and !(d and e)
 = b and !c and (!d or !e)
Pb = a and !c and !(d and e)
 = a and !c and (!d or !e)
Pc = !(a and b) and !(d and e)
 = (!a or !b) and (!d or !b)
Pd = !(a and b) and !c and e
 = (!a or !b) and !c and e
Pe = !(a and b) and !c and d
 = (!a or !b) and !c and d