Active Clauses

Determination

Clause \(c_i \) **determines** the value of its predicate when the other clauses have certain values.

If \(c_i \) is changed, the value of the predicate changes.

\(c_i \) is called the *major clause*.

Other clauses are *minor clauses*.

This is called *making the clause active*.
Determining Predicates

- **Goal**: Find tests for each clause when the clause determines the value of the predicate

<table>
<thead>
<tr>
<th>P = A ∨ B</th>
<th>P = A ∧ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>if (B = true), (p) is always true.</td>
<td>if (B = false), (p) is always false.</td>
</tr>
<tr>
<td>so if (B = false), (A) determines (p).</td>
<td>so if (B = true), (A) determines (p).</td>
</tr>
<tr>
<td>if (A = false), (B) determines (p).</td>
<td>if (A = true), (B) determines (p).</td>
</tr>
</tbody>
</table>
Infeasibility & Subsumption (8.1.4)

Consider the predicate:

\[(a > b \land b > c)\]

Realize the abstract test \(tt\) into a concrete test by finding values for \(a, b,\) and \(c\) that create the truth assignments \(tt\)

\[a=9, \ b=7, \ c=5\]

Now consider the predicate:

\[(a > b \land b > c) \lor c > a\]

Realize the abstract test \(ttt\) into a concrete test by finding values for \(a, b,\) and \(c\) that create the truth assignments \(ttt\)

- Infeasible test requirements are recognized and ignored
- Recognizing infeasible test requirements is generally undecidable
 – Thus usually done by hand
Logic Criteria Subsumption

- Combinatorial Clause Coverage (COC)
 - Restricted Active Clause Coverage (RACC)
 - Correlated Active Clause Coverage (CACC)
 - General Active Clause Coverage (GACC)

- Restricted Inactive Clause Coverage (RICC)
 - General Inactive Clause Coverage (GICC)

- Clause Coverage (CC)
- Predicate Coverage (PC)
Making Clauses Determine a Predicate

Three techniques

1. Informal **by inspection**
 - This is what we’ve been doing
 - Fast, but mistake-prone and does not scale—for experts

2. **Tabular** method
 - Very simple by hand
 - Few mistakes, slower, scales well to 5 or 6 clauses

3. **Definitional** method
 - More mathematical
 - Scales arbitrarily
Tabular Method

Find pairs of rows in the truth table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(P = a \land b)</th>
<th>(P_a)</th>
<th>(P_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For \(P_a \), find a **pair** of rows where
- \(b \) is the same in both
- \(a \) is different
- \(P \) is different

For \(P_b \), find a **pair** of rows where
- \(a \) is the same in both
- \(b \) is different
- \(P \) is different
Tabular Method

Find pairs of rows in the truth table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(p = a \land b)</th>
<th>(p_a)</th>
<th>(p_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For \(Pa\), find a pair of rows where
- \(b\) is the same in both
- \(a\) is different
- \(P\) is different

For \(Pb\), find a pair of rows where
- \(a\) is the same in both
- \(b\) is different
- \(P\) is different

Now do the same for “or”

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(p = a \lor b)</th>
<th>(p_a)</th>
<th>(p_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In-class Exercise

Tabular method

Use the tabular method to solve for P_a, P_b, and P_c. Give solutions as pairs of rows.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$a \wedge (b \lor c)$</th>
<th>P_a</th>
<th>P_b</th>
<th>P_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In-class Exercise

Tabular method

\(b \& c \) are the same, \(a \) differs, and \(p \) differs ... thus TTT and FTT cause \(a \) to determine the value of \(p \)

Again, \(b \& c \) are the same, so TTF and FTF cause \(a \) to determine the value of \(p \)

Finally, this third pair, TFT and FFT, also cause \(a \) to determine the value of \(p \)

Likewise, for clause \(c \), only one pair, TFT and TFF, cause \(c \) to determine the value of \(p \)

Three separate pairs of rows can cause \(a \) to determine the predicate.

Only one pair each for \(b \) and \(c \).

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(a \land (b \lor c))</th>
<th>(p_a)</th>
<th>(p_b)</th>
<th>(p_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definitional Method

Scales better (more clauses), requires more math

Definitional approach:

• $p_{c=\text{true}}$ is predicate p with every occurrence of c replaced by $true$
• $p_{c=\text{false}}$ is predicate p with every occurrence of c replaced by $false$

To find values for the minor clauses, connect $p_{c=\text{true}}$ and $p_{c=\text{false}}$ with exclusive OR

$$p_c = p_{c=\text{true}} \oplus p_{c=\text{false}}$$

After solving, p_c describes exactly the values needed for c to determine p
Definitional Method Examples

\[p = a \lor b \]

\[p_a = p_{a=true} \oplus p_{a=false} \]
\[= (true \lor b) \text{XOR} (false \lor b) \]
\[= true \text{XOR} b \]
\[= ! b \]

\[p = a \land b \]

Use the definitional approach to solve for Pa
Definitional Method Examples

\(p = a \lor b \)

<table>
<thead>
<tr>
<th>(p_a)</th>
<th>(p_{a=true} \oplus p_{a=false})</th>
<th>(= (true \lor b) \text{ XOR } (false \lor b))</th>
<th>(= true \text{ XOR } b)</th>
<th>(= ! b)</th>
</tr>
</thead>
</table>

\(p = a \land b \)

| \(p_a \) | \(p_{a=true} \oplus p_{a=false} \) | \(= (true \land b) \oplus (false \land b) \) | \(= b \oplus false \) | \(= b \) |

Use the definitional approach to solve for \(Pa \)
Definitional Method Examples

\[p = a \lor b \]
\[p_a = p_{a=true} \oplus p_{a=false} \]
\[= (\text{true} \lor b) \text{ XOR } (\text{false} \lor b) \]
\[= \text{true XOR b} \]
\[= !b \]

\[p = a \land b \]
\[p_a = p_{a=true} \oplus p_{a=false} \]
\[= (\text{true} \land b) \oplus (\text{false} \land b) \]
\[= b \oplus \text{false} \]
\[= b \]

Use the definitional approach to solve for \(p_a \)

\[p = a \lor (b \land c) \]

Use the definitional approach to solve for \(p_a \)
Definitional Method Examples

\[p = a \lor b \]

\[p_a = p_a=true \oplus p_a=false \]
\[= (true \lor b) \text{XOR} (false \lor b) \]
\[= true \text{XOR} b \]
\[= ! b \]

\[p = a \land b \]

\[p_a = p_a=true \oplus p_a=false \]
\[= (true \land b) \oplus (false \land b) \]
\[= b \oplus false \]
\[= b \]

\[p = a \lor (b \land c) \]

\[p_a = p_a=true \oplus p_a=false \]
\[= (true \lor (b \land c)) \oplus (false \lor (b \land c)) \]
\[= true \oplus (b \land c) \]
\[= ! (b \land c) \]
\[= ! b \lor ! c \]

“\text{NOT} b \lor \text{NOT} c” means either b or c must be false
XOR Identity Rules

Exclusive-OR (xor, ⊕) means both cannot be true
That is, A xor B means
"A or B is true, but not both"

\[
p = A \oplus A \land b = A \land \neg b
\]

\[
p = A \oplus A \lor b = \neg A \land b
\]

with fewer symbols ...

\[
p = A \text{ xor } (A \text{ and } b) = A \text{ and } \neg b
\]

\[
p = A \text{ xor } (A \text{ or } b) = \neg A \text{ and } b
\]
Repeated Variables

The definitions in this chapter yield the same tests no matter how the predicate is expressed

\[(a \lor b) \land (c \lor b) == (a \land c) \lor b\]

\[(a \land b) \lor (b \land c) \lor (a \land c)\]

- Only has 8 possible tests, not 64

Use the simplest form of the predicate, and ignore contradictory truth table assignments
A More Subtle Example

\[
p = (a \land b) \lor (a \land \neg b)
\]

\[p_a = \begin{cases} p_a=true \oplus p_a=false \\ (\text{true} \land b) \lor (\text{true} \land \neg b) \oplus (\text{false} \land b) \lor (\text{false} \land \neg b) \\ (b \lor \neg b) \oplus \text{false} \\ \text{true} \oplus \text{false} \\ \text{true} \end{cases}
\]

\[p_b = \begin{cases} p_b=true \oplus p_b=false \\ (a \land \text{true}) \lor (a \land \neg \text{true}) \oplus (a \land \text{false}) \lor (a \land \neg \text{false}) \\ (a \lor \text{false}) \oplus (\text{false} \lor a) \\ a \oplus a \\ \text{false} \end{cases}
\]

- \(a\) always determines the value of this predicate
- \(b\) never determines the value – \(b\) is irrelevant!
Logic Coverage Summary

Predicates are often very simple—in practice, most have less than 3 clauses
- In fact, most predicates only have one clause!
- With only clause, PC is enough
- With 2 or 3 clauses, CoC is practical
- Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses

Control software often has many complicated predicates, with lots of clauses
In-Class Exercise
Definitional method

\[P = (a \mid b) \& (a \mid c) \& d \]

Use the definitional method to solve for Pa
First step: \((T \mid b) \& (T \mid c) \& d) \text{xor} ((F \mid b) \& (F \mid c) \& d)\]
In-Class Exercise

Definitional method

\[P = (a \lor b) \land (a \lor c) \land d \]

Use the definitional method to solve for \(Pa \)
First step: \(((T \mid b) \land (T \mid c) \land d) \text{ xor } ((F \mid b) \land (F \mid c) \land d)\)

\[
Pa = ((T \mid b) \land (T \mid c) \land d) \text{ xor } ((F \mid b) \land (F \mid c) \land d) \\
= (T \land T \land d) \text{ xor } (b \land c \land d) \\
= d \text{ xor } (b \land c \land d)
\]

Using the identity: \(A \text{ xor } (A \land b) = A \land \neg b \)
\[
= d \land \neg (b \land c) \\
= d \land (\neg b \lor \neg c)
\]