
Chapter 2
Model-Driven Test Design

Brittany Johnson
SWE 437

Adapted from slides by Paul Ammann & Jeff Offutt

Complexity of testing software

No other engineering field builds products as complicated as software

The term correctness has no meaning
- Is a building correct?

- Is a car correct?

- Is a subway system correct?

Unlike other engineers, we must use abstraction to manage complexity
- This is the purpose of the model-driven test design process

- The “model” is an abstract structure

2

In-Class Exercise
Discuss

software correctness

Have you thought of correctness in software as possible or
impossible?

Do you agree with the claim in the book, or is it hard to accept?

You have five minutes. 3

Software Testing Foundations (2.1)

Testing can only show the presence of failures

Not their absence

Not all inputs will “trigger” a fault into causing a failure
4

Fault & Failure Model (RIPR)

Four conditions necessary for a failure to be observed

1. Reachability: The location or locations in the program that
contain the fault must be reached

2. Infection: The state of the program must be incorrect
3. Propagation: The infected state must cause some output or

final state of the program to be incorrect
4. Reveal: The tester must observe part of the incorrect portion

of the program state.

5

RIPR Model

6

• Reachability

• Infection

• Propagation

• Revealability

Test

Fault

Incorrect
Program

State Test
Oracles

Final Program State
Observed

Final
Program

State

Reaches

Infects

Propagates Reveals

Incorrect
Final
State

In-Class Exercise
Discuss

test oracles

Have you written any automated tests?

How did you decide what assertions to write?

Do you think you every checked the wrong part of the state?

You have five minutes. 7

Traditional Testing Levels (2.3)

Acceptance testing

Systems testing

Integration testing

Module testing (developer
testing)

Unit testing (developer testing)
8

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional Testing Levels (2.3)

Acceptance testing: Is the
software acceptable to the user?
Systems testing

Integration testing

Module testing (developer
testing)

Unit testing (developer testing)
9

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional Testing Levels (2.3)

Acceptance testing: Is the
software acceptable to the user?
Systems testing: Test the overall
functionality of the system
Integration testing

Module testing (developer
testing)

Unit testing (developer testing)
10

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional Testing Levels (2.3)

Acceptance testing: Is the
software acceptable to the user?
Systems testing: Test the overall
functionality of the system
Integration testing: Test how
modules interact with each other
Module testing (developer
testing)

Unit testing (developer testing)

11

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional Testing Levels (2.3)

Acceptance testing: Is the
software acceptable to the user?
Systems testing: Test the overall
functionality of the system
Integration testing: Test how
modules interact with each other
Module testing (developer
testing): Test each class, file,
module, component

Unit testing (developer testing)
12

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Traditional Testing Levels (2.3)

Acceptance testing: Is the
software acceptable to the user?
Systems testing: Test the overall
functionality of the system
Integration testing: Test how
modules interact with each other
Module testing (developer
testing): Test each class, file,
module, component
Unit testing (developer testing):
Test each unit (method)
individually 13

Class A

method
mA1()
method
mA2()

Class B

method
mB1()
method
mB2()

main Class P

Coverage Criteria (2.4)

Even small programs have too many inputs to fully test them all
- private static double computeAverage (int A, int B, int C)
- On a 32-bit machine, each variable ahs over 4 billion possible values
- Over 80 octillion possible tests!!
- Input space might as well be infinite

Testers search a huge input space
- Trying to find the fewest inputs that will find the most

problems
Coverage criteria give structured, practical ways to search the
input space

- search the input space thoroughly
- not much overlap in the tests 14

Advantages of Coverage Criteria

Maximize the “bang for the buck”

Provide traceability from software artifacts to tests
- source, requirements, design models,…

Make regression testing easier

Gives testers a “stopping rule” … when testing is finished

Can be well supported with powerful tools
15

Test requirements and criteria
Test criterion: A collection of rules and a process that defines test
requirements

- Cover every statement
- Cover every functional requirement

Test requirements: specific things that must be satisfied or covered
during testing

- each statement might be a test requirement
- each functional requirement might be a test requirement

Testing researchers have defined dozens of criteria, but they are all
really just a few criteria on four types of structures…

1. Input domains 3. Logic expressions
2. Graphs 4. Syntax descriptions

16

Old view: color boxes
Black box testing: derive tests from external descriptions of the
software, including specifications, requirements, and design

White box testing: derive tests from the source code internals of the
software, specifically including branches, individual conditions, and
statements

Model-based testing: derive tests from a model of the software (such
as a UML diagram)

MDTD makes these distinctions less important.
The more general question is:

from what abstraction level do we derive tests?
17

Model-driven test design (2.5)
Test design is the process of designing input values that will
effectively test software

Test design is one of the several activities for testing software
- Most mathematical
- Most technically challenging

18

Types of test activities
Testing can be broken up into four general types of activities

1. Test design 1.a. Criteria based
1.b. Human-based

2. Test automation
3. Test execution
4. Test evaluation

Each type of activity requires different skills, background
knowledge, education, and training
No reasonable software dev organization uses the same people for
requirements, design, implementation, integration, and
configuration control

Why do test organizations still use the same people for all four test
activities??

This clearly wastes resources.
19

1. Test design – (a) criteria-based
Design test values to satisfy coverage criteria or other

engineering goal

This is the most technical job in software testing
Requires knowledge of:

- discrete math
- programming
- testing

Requires much of a traditional CS degree
This is intellectually stimulating, rewarding, and challenging
Test design is analogous to software architecture on the
development side
Using people who are not qualified to design tests is a sure way to
get ineffective tests

20

1. Test design – (b) human-based
Design test values based on domain knowledge of the program

and human knowledge of testing

This is much harder than it may seem to developers
Criteria-based approaches can be blind to special situations
Requires knowledge of:

- domain, testing, and user interfaces

Requires almost no traditional CS
- a background in the domain of the software is essential

- an empirical background is very helpful (biology, psychology…)
- a logic background is very helpful (law, philosophy, math…)

This is intellectually stimulating, rewarding, and challenging
- But not to typical CS majors – they want to solve problems and build
things 21

2. Test automation
Embed test values into executable scripts

This is slightly less technical
Requires knowledge of programming
Requires very little theory
Often requires solutions to difficult problems related to
observability and controllability
Can be boring for test designers
Programming is out of reach for many domain experts
Who is responsible for determining and embedding the expected
outputs?

- Test designers may not always know the expected outputs
- Test evaluators need to get involved early to help with this22

Model-driven test design

23

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test
cases

test
scripts

test
results

model / structure

pass /
fail

Model-driven test design - steps

24

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test
cases

test
scripts

test
results

model / structure

pass /
fail

analysis
domain
analysis

criterion refine

generate

prefix
postfix

expected

automateexecuteevaluate

feedback

Model-driven test design - activities

25

software artifact implementation
abstraction

level

design
abstraction

level

test requirements

test requirements

refined requirements /
test specs

input
values

test
cases

test
scripts

test
results

model / structure

pass /
fail

Test Design

Test Automation
Test

ExecutionTest
Evaluation

Small example

26

Software Artifact : Java Method
/**

* Return index of node n at the
* first position it appears,
* -1 if it is not present

*/
public int indexOf (Node n)
{

for (int i=0; i < path.size(); i++)
if (path.get(i).equals(n))

return i;
return -1;

}
45

3

2

1 i = 0

i < path.size()

if

return ireturn -1

Control Flow Graph

Example (continued)

27

45

3

2

1

Abstract graph version

Support tool for graph coverage
http://www.cs.gmu.edu/~offutt/softwaretest/

Edges
1 2
2 3
3 2
3 4
2 5
Initial Node: 1
Final Nodes: 4, 5

6 requirements for
Edge-Pair Coverage
1. [1, 2, 3]
2. [1, 2, 5]
3. [2, 3, 4]
4. [2, 3, 2]
5. [3, 2, 3]
6. [3, 2, 5]

Test Paths
[1, 2, 5]
[1, 2, 3, 2, 5]
[1, 2, 3, 2, 3, 4]

http://www.cs.gmu.edu/~offutt/softwaretest/

Types of activities in the book

Most of this book is about test design
Other activities are well covered elsewhere

28

In-Class Exercise

Discuss
coverage criteria

Why do software orgs use coverage criteria?

Why don’t more software orgs use coverage criteria?

You have five minutes.

29

